Opendata, web and dolomites

NiGlucoMon

A Non-Invasive GLUCOse MONitoring device for diabetics based on Stimulated Raman Spectroscopy in a quick, cheap and painless method.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NiGlucoMon project word cloud

Explore the words cloud of the NiGlucoMon project. It provides you a very rough idea of what is the project "NiGlucoMon" about.

signal    quick    measuring    carry    stimulated    ratio    ulcers    little    light    finger    disliking    risk    60    meter    strips    times    amputations    dispersing    expensive    disease    molecules    infection    people    energy    uncontrolled    integration    scattering    protocol    patent    serious    kidney    manner    normal    interact    levels    spectroscopy    created    prick    beam    transferred    diabetes    damage    blood    complete    painless    pain    experimental    blindness    injury    optics    once    beams    complications    day    nerve    diabetics    spectrum    inexpensive    price    promises    today    analyzing    implications    biggest    raman    fail    collecting    transfer    recommended    foot    diabetic    invasive    plan    measured    solution    monitor    usable    leg    overcome    readiness    power    vessel    undergoes    chronic    proportional    proof    noise    least    packaging    formulated    heart    obstacles    sight    isolating    avoidance    glucose    technique    concentration   

Project "NiGlucoMon" data sheet

The following table provides information about the project.

Coordinator
2M ENGINEERING LIMITED 

Organization address
address: SIDNEY STREET 80
city: FOLKSTONE
postcode: CT19 6HQ
website: www.2mel.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.trigonamedical.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.1.3. (Treating and managing disease)
 Code Call H2020-SMEINST-1-2014
 Funding Scheme SME-1
 Starting year 2014
 Duration (year-month-day) from 2014-10-01   to  2015-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    2M ENGINEERING LIMITED UK (FOLKSTONE) coordinator 50˙000.00

Map

 Project objective

Today, diabetics must carry out a “finger prick” test as part of their blood glucose level management. It is recommended to do this test at least 4 times a day. Many diabetics fail to do so even once for a number of reasons: pain avoidance, disliking the sight of blood, cost of the test strips, the test protocol and the risk of infection. This failure to manage blood glucose levels has serious long term implications. Heart disease and blood vessel disease are the biggest complications that people with uncontrolled diabetes face. Blood vessel damage or nerve damage also lead to chronic foot and leg ulcers called diabetic foot that can result in amputations. More than 60% of leg and foot amputations not related to an injury are due to diabetes which is also the cause of new blindness and kidney disease. Our solution is a non-invasive glucose monitor that will allow people with diabetes to monitor their blood glucose levels in a quick and painless manner, for a low price. When using normal Raman Spectroscopy very little light undergoes Raman scattering, therefore high integration times are required to achieve a usable signal-to-noise ratio. Expensive optics are necessary for collecting, isolating and dispersing the light. Our technique and system packaging promises to overcome all of these obstacles. We use Stimulated Raman Spectroscopy, created when two light beams interact with each other in the presence of glucose. The energy is transferred from one beam of light to the other, and this transfer is proportional to the number of glucose molecules present. By measuring this energy transfer using a simple and inexpensive power meter, the glucose concentration is measured without the need for dispersing the light and analyzing the Raman Spectrum. A patent has been applied for. We have completed the Technology Readiness Level 2 (technology concept formulated) and plan to complete Technology Readiness Level 3 (Experimental Proof of concept) in this project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NIGLUCOMON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NIGLUCOMON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.1.3.)

HELP (2019)

Collaboration for innovation: Establishment of a pan-nematode drug development platform

Read More  

HAP2 (2020)

Host-targeted Approaches for the Prevention and the treatment of Hospital-Acquired Pneumonia

Read More  

TT4CL (2019)

Clinical development of oral oleylphosphocholine as a new drug for the treatment of Old World Cutaneous Leishmaniasis

Read More