Opendata, web and dolomites

GRAFLEX SIGNED

Graphene curvature, flexibility and reactivity control by means of external fields: theory and computer simulations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GRAFLEX project word cloud

Explore the words cloud of the GRAFLEX project. It provides you a very rough idea of what is the project "GRAFLEX" about.

investigation    hydrogen    energy    perturbation    biomed    ripples    reactivity    found    chemi    functional    gained    trajectory    external    frequencies    curvature    local    harvesting    consequent    break    producing    sized    resolved    conducting    dynamics    conversion    graflex    combination    strain    tech    coherent    connected    sorption    traveling    europe    guarantee    ab    thz    dependent    electric    academia    proponent    relevance    simulations    quantum    possibility    theories    shown    material    engineering    interaction    attain    functionalization    attractive    time    extensive    reversible    initio    bio    feasibility    carrier    storage    train    observe    gradient    vibrations    kinetics    physis    dynamical    resume    flexibility    complementarity    chemical    position    chosen    emf    nest    correspond    group    flexoelectricity    theoretical    electromagnetic    independent    chemistry    calculation    electronic    density    df    enhancement    graphene    modulation    curved    expertise    nano   

Project "GRAFLEX" data sheet

The following table provides information about the project.

Coordinator
CONSIGLIO NAZIONALE DELLE RICERCHE 

Organization address
address: PIAZZALE ALDO MORO 7
city: ROMA
postcode: 185
website: www.cnr.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://www.muscade-lab.it/research/graphene
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2015
 Duration (year-month-day) from 2015-09-08   to  2017-09-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) coordinator 180˙277.00

Map

 Project objective

Graphene is a unique material with high potential for applications from high-tech to bio-tech. These capabilities are directly connected to graphene flexibility and electronic properties, as well as to the possibility of controlling them by chemical functionalization. Curvature related reactivity enhancement was shown, and curvature control has found several possible applications from H-storage and energy harvesting to biomed engineering. Thus, the control of graphene curvature is of high relevance. The aim of GRAFLEX is to investigate the process of curvature control by means of external electric- and electromagnetic fields (EMF), and the consequent curvature-dependent interaction with H, specifically focusing on the physis- to chemi-sorption reversible conversion. EMF in the range of THz will be chosen, since coherent graphene vibrations at those frequencies correspond to the traveling nano-sized ripples producing a local dynamical modulation of the curvature. To achieve this, we propose to use a state-of-the-art density functional (DF), DF perturbation, and trajectory based time dependent DF theories in combination with ab initio investigation of the kinetics and calculation of flexoelectricity response to the strain gradient in curved graphene. Conducting the proposed research after carrier break will help the proponent to resume research activities and to train in 1)using the most advanced theoretical methods to investigate properties in graphene/hydrogen system; 2)observe time-resolved information to exploit curvature control process. The complementarity expertise of researchers at NANO@NEST group of multi-scale simulations and proponent’s extensive experience trajectory based chemical dynamics, kinetics and quantum chemistry, together with attractive working conditions, guarantee the feasibility of this challenging project. The experience gained by the proponent within GRAFLEX will change her carrier path to attain an independent position in academia in Europe

 Publications

year authors and title journal last update
List of publications.
2016 K Kakhiani and V Tozzini
Morphing Graphene
published pages: 86, ISSN: , DOI:
PLATINUM – Aziende e Protagonisti, Special Issue Research&Innovation November 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAFLEX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAFLEX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MetAeAvIm (2019)

The Role of the Metabolism in Mosquito Immunity against Dengue virus in Aedes aegypti

Read More  

SOFIE (2019)

Southern Ocean Overtuning Fingerprint Experiment

Read More  

F4TGLUT (2019)

Food for thought: monitoring the effects of drugs and diet on neuronal glutamate release using nanoelectrodes

Read More