Opendata, web and dolomites

MARIS SIGNED

Mixotrophy among small marine phytoflagellates – prevalence and impact on prokaryotic communities

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MARIS project word cloud

Explore the words cloud of the MARIS project. It provides you a very rough idea of what is the project "MARIS" about.

responsible    basic    protist    excellently    dichotomy    fisheries    lacking    picture    optimal    predicting    cyanobacteria    researcher    expertise    predator    prokaryotic    thought    understudied    despite    models    flawed    climate    anderson    uuml    phytoflagellates    ecosystem    acute    bacterial    coastal    flow    energy    diversity    strict    photosynthesis    overwhelmingly    supervisor    msp    web    abundance    restart    hansen    potentially    fact    consistent    ocean    interactions    fraction    anticipated    considering    break    productivity    food    groups    dr    regulation    culture    influence    fe    fuses    strategy    unicellular    community    misleading    international    analyze    season    balance    environmental    organic    additionally    primary    exchange    shift    shifts    prof    phytoplankton    scanlan    marine    prey    mixotrophy    rgens    global    largely    mixotrophic    micro       health    collaborators    combine    outcome    predictions    unknown    successful    employed    microbial    le    identity    career    scientific    small    phototrophy    maternity    bacterivorous    trophic    relevance    bacterivory    zooplankton   

Project "MARIS" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website https://www.researchgate.net/project/Bacterivory-in-mixotrophic-small-phytoflagellates
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 212˙194.00

Map

 Project objective

Mixotrophy, i.e. the use of photosynthesis and prey uptake for growth, is increasingly recognized as a major trophic strategy for small (≤ 20 µm) phytoflagellates, which are responsible for a significant fraction of global primary production. In fact, marine primary production in many areas is now thought to be supported by organic P and Fe derived from prey. Despite this, a consistent picture of the overall relevance of bacterivory in open ocean and coastal mixotrophic small phytoflagellates (MSP) is lacking. Additionally, a strict dichotomy between `phytoplankton´ and `zooplankton´ is still overwhelmingly employed in models predicting the flow of matter and energy through marine systems, leading to potentially flawed and misleading predictions on ecosystem productivity and the health of global fisheries. This is especially significant when considering that anticipated environmental changes related to climate change are expected to shift the phototrophy/mixotrophy balance, with largely unknown consequences. The present study will combine culture and field work to 1) determine how shifts in environmental conditions related to e.g. season, influence coastal MSP abundance, identity and bacterivorous impact on the whole prokaryotic community, and on specific prokaryotic groups, such as unicellular cyanobacteria; and 2) analyze the importance and basic regulation of bacterial uptake for understudied coastal MSP. The proposed project excellently fuses the expertise areas of the experienced researcher, Dr. Anderson (bacterivory and predator-prey interactions), with the supervisor, Prof. Hansen (mixotrophic phytoflagellates) and the international collaborators, Prof. Jürgens (protist diversity and microbial food web interactions) and Prof. Scanlan (unicellular cyanobacteria), leading to an optimal exchange of knowledge for a successful project outcome. It will additionally restart and further the promising scientific career of Dr. Anderson after her maternity break.

 Publications

year authors and title journal last update
List of publications.
2017 Ruth Anderson, Klaus Jürgens, Per J. Hansen
Mixotrophic Phytoflagellate Bacterivory Field Measurements Strongly Biased by Standard Approaches: A Case Study
published pages: , ISSN: 1664-302X, DOI: 10.3389/fmicb.2017.01398
Frontiers in Microbiology 8 2019-06-14

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MARIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MARIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

FANTASTICAL (2020)

NOVEL TOOLS FOR FOOD SAFETY MANAGEMENT BASED ON QMRA WITH A ROBUST MODELLING OF UNNOVEL TOOLS FOR FOOD SAFETY MANAGEMENT APPLYING QMRA WITH ROBUST MODELLING OF UNCERTAINTY AND VARIABILITY: FANTASTICAL

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More