Opendata, web and dolomites

G4invivo SIGNED

Probing intracellular folding and dynamics of telomeric DNA structures with single-molecule FRET

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 G4invivo project word cloud

Explore the words cloud of the G4invivo project. It provides you a very rough idea of what is the project "G4invivo" about.

idea    conformation    remained    function    transfer    energy    rster    microscopy    efficacy    perform    terminating    molecules    biological    cells    dna    quadruplexes    life    telomeres    inside    folding    accurately    active    balance    functions    describes    vital    environments    live    single    chromosomes    structures    human    resonance    largely    anticancer    bridge    measured    molecule    regulation    physiological    quadruplex    distance    ouml    cell    adopting    thousands    machines    consists    living    opportunity    mechanistic    drug    distributions    ends    stimulate    isolated    gap    vitro    therapies    integrity    molecular    lack    suitable    underlying    powerful    limited    considerable    made    techniques    telomeric    situation    versatile    decades    employ    optical    stranded    enhancement    structure    investigation    milieu    sequences    dynamics    genome    guanine    linear    cellular    distances    fluorescence    individual    fret    fundamental    technique    biology    tandem    progress    heterogeneous    biophysical    eukaryotic    combination    maintenance   

Project "G4invivo" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website http://inano.au.dk/about/research-groups/single-molecule-biophotonics-group-victoria-birkedal/people/
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2017-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 212˙194.00

Map

 Project objective

Telomeres, the ends of linear eukaryotic chromosomes, are one of the most versatile “molecular machines” of life. They perform a vital role in several fundamental processes in biology, as maintenance of genome integrity and the regulation of cell growth. Human telomeric DNA consists of thousands of tandem repeats of guanine-rich sequences, terminating the chromosomes. Under physiological conditions, such guanine-rich repeats are capable of adopting four stranded structures, called G-quadruplex DNA. Considerable research has been dedicated to an understanding of functions of telomeres, and during the past decades, much progress has been made towards identifying the underlying processes for G-quadruplex DNA isolated in vitro. However, most of our knowledge of conformation and mechanistic understanding of the balance between the structure and function of telomeric DNA inside cells has remained very limited, largely due to a lack of suitable methods. An opportunity to bridge this gap is single-molecule fluorescence microscopy in combination with Förster resonance energy transfer (FRET), a powerful technique that allows distances, distance distributions, and dynamics of individual biological molecules to be measured even in complex and heterogeneous environments, as cellular milieu. The goal of this project is to employ such optical single-molecule techniques to perform a comprehensive biophysical analysis of the folding and dynamics of G-quadruplex DNA within live cells. This investigation will provide an idea of how accurately our current understanding of the folding and dynamics of G-quadruplex DNA in vitro describes the situation inside the living cell, and will, among other aspects, be crucial for understanding the biological functions of G-quadruplexes and in particular may stimulate the enhancement of the efficacy of the novel anticancer therapies, which use these structures as an active target for drug development.

 Publications

year authors and title journal last update
List of publications.
2017 Andreas Sprengel, Pascal Lill, Pierre Stegemann, Kenny Bravo-Rodriguez, Elisa-C. Schöneweiß, Melisa Merdanovic, Daniel Gudnason, Mikayel Aznauryan, Lisa Gamrad, Stephan Barcikowski, Elsa Sanchez-Garcia, Victoria Birkedal, Christos Gatsogiannis, Michael Ehrmann, Barbara Saccà
Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions
published pages: 14472, ISSN: 2041-1723, DOI: 10.1038/ncomms14472
Nature Communications 8 2019-06-18
2016 Mikayel Aznauryan, Siri Søndergaard, Sofie L. Noer, Birgit Schiøtt, Victoria Birkedal
A direct view of the complex multi-pathway folding of telomeric G-quadruplexes
published pages: 11024-11032, ISSN: 0305-1048, DOI: 10.1093/nar/gkw1010
Nucleic Acids Research 44/22 2019-06-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "G4INVIVO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "G4INVIVO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More