Opendata, web and dolomites

TERAULTRA SIGNED

Terahertz Ultra-Short Pulses from Self-Induced Transparency Modelocked Quantum Cascade Lasers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TERAULTRA project word cloud

Explore the words cloud of the TERAULTRA project. It provides you a very rough idea of what is the project "TERAULTRA" about.

tool    light    medium    dephasing    qcls    date    ideal    experimentally    goals    atmospheric    break    ultra    technological    dipole    comb    pulses    stability    demonstrations    demonstration    inherent    teraultra    suppressing    inter    crucially    quantum    resonant    thz    sit    time    fast    spectroscopy    initiate    qcl    realize    modelocked    interleaved    continuous    ps    recovery    gt    subband    electromagnetic    lt    determined    owing    ultrafast    pulse    widths    generation    create    compact    times    shorter    frequency    cavities    suitable    engineered    absorption    section    thereby    absorbs    moments    coupled    limited    modelocking    transparency    stable    spectrum    passive    independently    direction    produces    semiconductor    laser    source    waveguide    gain    self    active    simulating    cascade    mediated    coherence    relatively    waves    first    effect    interleaving    possibility    science    absorbing    terahertz    media    lacks   

Project "TERAULTRA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://engineering.leeds.ac.uk/staff/753/Dr_Muhammad_Anisuzzaman_Talukder
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 195˙454.00

Map

 Project objective

The terahertz (THz) frequency range in the electromagnetic spectrum lacks a compact semiconductor source of ultra-short pulses, suitable for applications including ultrafast spectroscopy, atmospheric science and stable THz frequency comb generation. Although the quantum cascade laser (QCL) is a promising compact semiconductor THz source, its success in creating ultra-short pulses is limited due to the inherent fast gain recovery time. There have been demonstrations of short pulse (>1 ps) generation from THz QCLs based on active modelocking, although the stability of the pulses is limited. Crucially, there has been no demonstration of passive modelocking of QCLs to date, which in principle can create pulses much shorter than 1 ps.

The goals of the proposed TERAULTRA research are to break through this technological challenge, and create THz ultra-short pulses of <1 ps from QCLs using self-induced transparency (SIT) effects. Recently, it has been proposed that QCLs are the ideal tool to realize SIT mediated modelocking owing to their relatively long inter-subband coherence times, and, importantly, the possibility of interleaving gain and absorbing media with engineered dipole moments. While the gain medium produces gain, the absorbing medium absorbs the resonant light, suppressing the growth of the continuous waves, thereby creating short pulses. We will design THz QCLs with coupled gain and absorbing media that can initiate modelocking using SIT effects, for the first time. By simulating the gain recovery and dephasing times, dipole moments, and gain and absorption parameters, the stability of the modelocked pulses will be determined and understood theoretically. We will then demonstrate experimentally the first modelocked laser exploiting the SIT effect, based on a THz QCL with interleaved gain and absorbing media in the growth direction as well as based on independently-controlled two-section waveguide cavities, leading to pulse widths <1 ps.

 Publications

year authors and title journal last update
List of publications.
2017 Muhammad Anisuzzaman Talukder
Ultra-short pulses from quantum cascade lasers for terahertz time domain spectroscopy
published pages: 1020906, ISSN: , DOI: 10.1117/12.2267431
Image Sensing Technologies: Materials, Devices, Systems, and Applications IV 2019-06-13
2016 M. A. Talukder, P. Dean, E. Linfield, A. G. Davies
Cavity-induced slow gain recovery in pump-probe experiments of quantum cascade lasers
published pages: , ISSN: , DOI:
International Quantum Cascade Lasers School and Workshop (IQCLSW), Cambridge, UK (2016) 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TERAULTRA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TERAULTRA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

UNITE (2019)

Unification Through Law: The Court of Justice of the European Union as Cultural-Moral Agent

Read More  

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More  

THIODIV (2020)

Exploring thioalkynes potential in gold catalysis with a divergent reactivity manifold

Read More