Opendata, web and dolomites

RTEL1inHHS

Characterization of RTEL1 mutations in Hoyeraal-Hreidarsson Syndrome

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RTEL1inHHS project word cloud

Explore the words cloud of the RTEL1inHHS project. It provides you a very rough idea of what is the project "RTEL1inHHS" about.

abolish    uterine    impair    stable    regulated    interaction    little    combination    stability    deficient    perform    recombination    significantly    anaemia    hreidarsson    immunodeficiency    translational    inter    characterization    disorder    shed    mouse    contribution    variants    repair    model    physiological    functions    dynamically    integrity    hhs    presenting    host    regulation    expression    multisystem    telomeres    interactions    maintaining    mutant    holds    rtel1    forks    genome    18    modifications    hoyeraal    mutations    vitro    lab    disassembling    phenotypes    summary    instability    secondary    dna    maintains    vivo    cells    light    recruitment    causal    retardation    discoveries    undefined    arise    outstanding    function    advantage    replication    permits    structures    syndrome    complementation    post    proteomic    shown    prevents    genomic    patients    recruited    anticipate    execute    aplastic    phenotype    disease    questions    protein    mutants   

Project "RTEL1inHHS" data sheet

The following table provides information about the project.

Coordinator
THE FRANCIS CRICK INSTITUTE LIMITED 

Organization address
address: 1 MIDLAND ROAD
city: LONDON
postcode: NW1 1AT
website: www.crick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.crick.ac.uk/research/labs/simon-boulton
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2018-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE FRANCIS CRICK INSTITUTE LIMITED UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Hoyeraal-Hreidarsson syndrome (HHS) is a multisystem disorder with patients presenting inter-uterine growth retardation, immunodeficiency, and/or aplastic anaemia. Recently, mutations in RTEL1 have been shown to be causal for this disease. RTEL1 prevents genomic instability and maintains integrity of the telomeres by disassembling different secondary structures that arise during DNA replication, repair, and recombination.Although recent discoveries from the host lab and others have shed light on the function of RTEL1 in maintaining genome stability, many outstanding questions remain to be addressed. Currently very little is known about RTEL1 regulation or how it is dynamically recruited to replication forks and telomeres to execute its functions. Moreover, it is not known whether RTEL1 expression or recruitment is regulated by post-translational modifications. Of the 18 identified mutations, only two have been characterized. As these undefined mutations are causal for HHS and must therefore affect the RTEL1 function, their detailed characterization is likely to shed light on new aspects of its function and/or regulation. The main objective of this project is to characterize the undefined HHS mutations in RTEL1 and determine how they impair the physiological protein function, in vitro and in vivo.

To this end, we will take advantage of a complementation system that permits the stable expression of RTEL1 variants in RTEL1 deficient cells, allowing us to study RTEL1 mutant contribution to RTEL1 phenotypes. We will also perform comparative proteomic analysis of the mutants to determine if they abolish specific/novel protein-protein interactions. HHS mutations that present with a defined phenotype or affect a novel interaction will be studied in vivo in a mouse model.

In summary, we anticipate that the combination of approaches proposed here holds the potential to significantly contribute towards the understanding of how different mutations affect RTEL1 function.

 Publications

year authors and title journal last update
List of publications.
2018 Pol Margalef, Panagiotis Kotsantis, Valerie Borel, Roberto Bellelli, Stephanie Panier, Simon J. Boulton
Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe
published pages: 439-453.e14, ISSN: 0092-8674, DOI: 10.1016/j.cell.2017.11.047
Cell 172/3 2019-10-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RTEL1INHHS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RTEL1INHHS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More