Opendata, web and dolomites

CNS-Insuin-Res

How insulin resistance in the dorsal vagal complex affects glucose metabolism and feeding behaviour

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CNS-Insuin-Res" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://biologicalsciences.leeds.ac.uk/school-biomedical-sciences/staff/66/dr-beatrice-maria-filippi
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2019-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 195˙454.00

Map

 Project objective

The central nervous system (CNS) integrates peripheral hormonal signals to regulate glucose homeostasis and feeding behavior. Obesity can cause the development of insulin resistance in the brain and completely disrupt the regulative functions of the CNS. Restoring the brain’s ability to modulate metabolic functions could be very important to prevent the negative outcomes of obesity and diabetes. The Dorsal Vagal Complex (DVC) in the brainstem senses insulin to regulate glucose metabolism and feeding behavior in rodents. Three days of high fat diet feeding (HFD) is sufficient to completely disrupt the insulin response, thus causing an increase in blood glucose levels and overnutrition. I propose to understand the molecular events that trigger the development of insulin resistance in the DVC and understand the neuronal networks involved in the regulation glucose metabolism and feeding behavior in the DVC. I will use a combination of in vitro molecular approaches and in vivo physiological readouts to shed light on the physiological functions of this area of the brain. Identification of novel target molecules that are involved in the development of insulin resistance may also provide the basis for the development of new pharmacological approaches to counteract the development of obesity and diabetes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CNS-INSUIN-RES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CNS-INSUIN-RES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

UNITE (2019)

Unification Through Law: The Court of Justice of the European Union as Cultural-Moral Agent

Read More  

SRIMEM (2018)

Super-Resolution Imaging and Mapping of Epigenetic Modifications

Read More  

ArcticRisk (2020)

Risk and Business continuity management in the Arctic

Read More