Opendata, web and dolomites

CoupledDB

High-Performance Indexing for Emerging GPU-Coupled Databases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CoupledDB project word cloud

Explore the words cloud of the CoupledDB project. It provides you a very rough idea of what is the project "CoupledDB" about.

action    units    disk    commonplace    exploits    mobile    graphics    forefront    processed    disruptive    feasible    suggest    exclusively    compute    hot    gpu    transfer    forwardly    multicore    researcher    responsive    frequently    idle    powerful    incorporating    foundational    productivity    energy    straight    trajectories    neurons    coupled    cheaper    scientific    confluence    hardware    gpus    types    stage    handling    deescalating    connected    becomes    memory    computation    leverage    accelerators    objects    dichotomy    techniques    setting    innovation    ecosystem    industry    ubiquitous    vastly    parallel    parallelism    expertise    algorithms    heterogeneity    model    heterogeneous    cut    principal    data    architecture    lower    proliferation    programming    accessed    index    positioning    skills    computational    competitiveness    fact    footprint    performance    greener    vehicle    faster    preliminary    database    soon    host    cross    building    indexing    indexes    sweeping    squander    valuable    structures    simulations    small   

Project "CoupledDB" data sheet

The following table provides information about the project.

Coordinator
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU 

Organization address
address: HOGSKOLERINGEN 1
city: TRONDHEIM
postcode: 7491
website: www.ntnu.no

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Norway [NO]
 Project website https://www.ntnu.edu/idi/groups/dart
 Total cost 208˙400 €
 EC max contribution 208˙400 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU NO (TRONDHEIM) coordinator 208˙400.00

Map

 Project objective

'Index structures are foundational to the performance of database systems and large-scale simulations. Even small advances in indexing can therefore have widespread, sweeping impact on both industry competitiveness and scientific productivity. The confluence of several hardware trends is setting the stage for disruptive innovation in database indexing: deescalating costs of memory make it feasible to organise most of the 'hot', frequently accessed data in memory rather than on disk; and increasingly commonplace accelerators such as graphics processing units (GPUs) offer large-scale parallelism with a lower energy footprint. Thus, in-memory indexing that exploits GPUs could be much cheaper, faster, and greener.

However, effectively incorporating GPUs into computation is a principal research challenge. To idle the powerful multicore system in favour of exclusively using the GPU connected to it, as done currently, is to squander valuable resources. On the other hand, the GPU has a vastly different computational model, so cannot straight-forwardly leverage multicore techniques. The challenges in handling this dichotomy, in fact, will cross-cut many research areas as the heterogeneity in the compute ecosystem becomes ubiquitous in parallel processing.

Building on preliminary results that suggest common data structures processed by architecture-specific algorithms can support heterogeneity, this action will design indexes for the coupled multicore-GPU database systems that will soon be ubiquitous. The indexes will enable more responsive simulations of complex objects such as neurons and vehicle trajectories and support the recent proliferation of mobile-generated data. Moreover, through the action, the researcher will transfer technical parallel programming skills to the host, while the host will transfer expertise about new data types to the researcher. The project results will contribute to Europe's positioning at the forefront of heterogeneous parallel processing.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COUPLEDDB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COUPLEDDB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More