Opendata, web and dolomites

Human Rpc5

RNA Polymerase III Rpc4/Rpc5 subcomplex and Selenocysteine tRNA transcription

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Human Rpc5 project word cloud

Explore the words cloud of the Human Rpc5 project. It provides you a very rough idea of what is the project "Human Rpc5" about.

proteins    amongst    unpublished    trnasec    450    exclusively    tbp    predictions    relies    metazoans    cellular    secys    acting    counterpart    conserved    rnas    central    homologue    c37    small    isolation    date    structure    prokaryotic    unanticipated    evidences    polymerase    rpc5    accurate    lab    rna    dependent    interestingly    participates    recruitment    phylogenetic    indicated    eukaryotic    prolonged    residues    stress    region    unravelled    mechanism    terminal    regulatory    selb    context    mrnas    kingdom    similarity    exception    recruiting    size    containing    homology    similarly    preliminary    trna    eukaryotes    brf2    selenocysteine    pol    crystallography    characterise    subunit    trnas    blockade    transcription    group    ray    responsible    protein    promoters    recruits    structural    interaction    suggests    translation    extension    govern    determinants    interacts    yeast    link    molecular    secis    human    bound    promoter    terminus    oxidative    dna   

Project "Human Rpc5" data sheet

The following table provides information about the project.

Coordinator
THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL 

Organization address
address: OLD BROMPTON ROAD 123
city: LONDON
postcode: SW7 3RP
website: www.icr.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.icr.ac.uk/our-research/research-divisions/division-of-structural-biology/vannini-group
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL UK (LONDON) coordinator 183˙454.00

Map

 Project objective

In higher eukaryotes, the RNA polymerase III (Pol III) participates in the transcription of small RNAs such as the tRNAs. RNA polymerase recruitment to their specific promoter relies on the activity of several transcription factors. Brf2 is a transcription factor that exclusively recruits RNA Pol III at the selenocysteine tRNA (tRNASec). Unpublished work from our group has unravelled an unanticipated central role of Brf2 in the oxidative stress response pathway, by acting as a cellular blockade during prolonged oxidative stress. We are interested in understanding the molecular determinants that govern RNA Pol III recruitment at tRNASec promoter and its interaction with Brf2-bound promoters. In general, RNA Pol III subunit’s size is conserved amongst the eukaryotic kingdom. However, an exception is the human Rpc5 subunit, whose C terminus has 450 residues that are not present in its yeast counterpart C37. Similarly to Brf2, the Rpc5 C-terminal extension is only present in higher metazoans, which suggests a phylogenetic link between these two proteins. The recruiting mechanism of RNA Pol III to Brf2-dependent promoters has not been described to date. Preliminary results in our lab provide evidences that indeed Rpc5 C terminus is responsible for the accurate recruitment of RNA Pol III at TBP/Brf2/DNA complex. Interestingly, structural homology predictions indicated that the human Rpc5 C-terminal extension is a eukaryotic homologue of the prokaryotic protein SelB, a factor that interacts with the tRNASec and with a specific region of mRNAs, the SECIS-element, during translation of SeCys containing proteins. This similarity suggests a regulatory role for Rpc5 C terminus in the interaction with the SECIS-element and/or the tRNASec. Our main objectives are to determine the structure of the Rpc5 C terminus in isolation and in complex with Brf2/TBP/DNA by X-ray crystallography and to characterise the role of Rpc5 C terminus in the context of tRNASec transcription.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HUMAN RPC5" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HUMAN RPC5" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PmNC (2019)

Policy-making of early nature conservation. The Netherlands and the United Kingdom compared, 1930-1960

Read More  

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More