Opendata, web and dolomites

DDQF SIGNED

Dipolar Droplets in Quantum Ferrofluids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DDQF project word cloud

Explore the words cloud of the DDQF project. It provides you a very rough idea of what is the project "DDQF" about.

positioned    dense    nature    create    roton    technologies    magnetic    possesses    discovery    largely    experimentalists    variety    body    atomic    clarity    cooled    ing    subsequent    opportunity    midst    answer    atom    einstein    situation    dominant    collapsing    few    lived    phenomena    prominent    questions    droplets    events    dipole    simulations    liquid    excitations    thanks    cleanest    crystal    ferrofluid    fluctuations    presenting    1000    physical    supersolids    generation    density    close    becs    zero    theories    realising    local    physics    rare    employed    quantum    emphasis    pave    self    created    experiment    intriguing    interactions    stabilisation    turn    degree    dramatic    absolute    earth    stabilised    reserved    finite    temperature    published    approximation    demonstrated    pivotal    fundamental    bose    dilute    experiments    remarkable    droplet    dipolar    atoms    tackle    billionths    uniquely    unforeseen    condensates    flexible    gases    revolution    revealing    last   

Project "DDQF" data sheet

The following table provides information about the project.

Coordinator
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER 

Organization address
address: Welfengarten 1
city: HANNOVER
postcode: 30167
website: www.uni-hannover.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER DE (HANNOVER) coordinator 159˙460.00

Map

 Project objective

Cooled to a few billionths of a degree above absolute zero atomic Bose-Einstein condensates (BECs) are some of the cleanest, most flexible, many-body quantum systems available. They have been used to answer fundamental questions for a large variety of physical phenomena with remarkable clarity, as well as for the discovery of new physics. The field is currently in the midst of a revolution, thanks largely to the development of such key technologies as the ability to create dilute BECs of rare-earth elements, realising the quantum ferrofluid in which each atom possesses a large magnetic dipole. Last year, in a dramatic turn of events, an experiment was published in Nature revealing the discovery of an unforeseen, novel phase of matter: the dilute, dipolar quantum liquid. This was created by the self-stabilisation of a collapsing quantum ferrofluid and the subsequent formation of a crystal of long-lived dipolar droplets, with around 1000 atoms per droplet. It has been demonstrated that each droplet is stabilised by quantum fluctuations, presenting a rare opportunity to investigate a dilute system in which the role of quantum fluctuations is dominant, a situation typically reserved for dense matter. We propose to study the exciting new physics resulting from dipolar interactions and quantum fluctuations, with a particular emphasis on the three most intriguing and timely topics in the physics of dipolar gases: (1) roton excitations, (2) quantum droplets, and (3) dipolar supersolids. To answer pivotal questions for these topics we will develop challenging novel methods, including finite-temperature theories and simulations beyond the currently employed local-density approximation. In close collaboration with top experimentalists in the field, this project will pave the way for a new generation of experiments on dipolar gases. This proposal is uniquely positioned to tackle some of the most prominent and timely questions of the field.

 Publications

year authors and title journal last update
List of publications.
2018 Au-Chen Lee, D. Baillie, R. N. Bisset, P. B. Blakie
Excitations of a vortex line in an elongated dipolar condensate
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.98.063620
Physical Review A 98/6 2020-04-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DDQF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DDQF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More