Opendata, web and dolomites

MICROCRACK

Micromechanics of rock fracture: enabling energy-efficient mining through next generation cracking models

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MICROCRACK project word cloud

Explore the words cloud of the MICROCRACK project. It provides you a very rough idea of what is the project "MICROCRACK" about.

indispensable    successfully    expenditure    micromechanics    projected    rock    opportunity    huge    consequently    governing    share    containing    comminution    recognition    centre    milestones    experiments    outcomes    maturity    corrective    mechanisms    significantly    builds    interdisciplinary    programmed    global    theoretical    monitor    responsible    engineering    consumption    laying    platform    perform    environment    experimental    academic    micromechanical    heterogeneous    innovative    pertinent    asset    provides    cambridge    breakthrough    constitutes    public    half    complementary    foundations    group    efficient    appropriate    supporting    plan    transfer    cracking    international    least    overcome    strategy    energy    establishing    widening    communicate    career    simulations    community    constitutive    background    model    total    host    optimum    competences    numerical    profile    intersectoral    fracture    anisotropic    critical    accounts    rocks    techniques    progress    mining    embed    facilities    scientific    physically    industry    framework    basis   

Project "MICROCRACK" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Mining is a huge industry that accounts for a very significant share of global energy consumption, with rock comminution being responsible for – at least – half of the total energy expenditure. There is, consequently, a strong need to develop innovative energy-efficient mining techniques, and this proposal will focus on this major opportunity.

A physically-based constitutive framework for anisotropic cracking of heterogeneous rocks will be developed, laying the scientific foundations for micromechanical modelling of rock fracture. The model will embed the mechanisms governing cracking of heterogeneous rocks in a novel and interdisciplinary approach. The complementary profile of the applicant and the host group is a strong asset, with their previous experience in micromechanics and fracture establishing the basis to successfully overcome the theoretical, numerical and experimental challenges of the project. The proposal builds upon the applicant’s background and involves new research areas, widening his competences and supporting development to academic maturity.

An appropriate work plan has been programmed to achieve the scientific objectives and ensure knowledge transfer. Milestones and deliverables have been established to monitor the progress of the project implementation and pertinent corrective measures projected. A detailed dissemination strategy has been proposed to communicate findings to the general public, and to increase the impact of the research outcomes in the scientific community and engineering practice.

The Cambridge Centre for Micromechanics provides an optimum environment for the project, containing the facilities required to perform the indispensable critical experiments and advanced numerical simulations. Moreover, it constitutes a unique platform to develop international, intersectoral and interdisciplinary recognition, supporting the applicant in achieving a breakthrough that will significantly impact his scientific career.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROCRACK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROCRACK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

MSOPGDM (2019)

Mechanistic studies of prokaryotic genome defense mechanisms

Read More  

EXPAND (2019)

Examining pan-neotropical diasporas

Read More