Explore the words cloud of the HEAT project. It provides you a very rough idea of what is the project "HEAT" about.
The following table provides information about the project.
Coordinator |
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 148˙728 € |
EC max contribution | 148˙728 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-PoC |
Funding Scheme | ERC-POC |
Starting year | 2019 |
Duration (year-month-day) | from 2019-03-01 to 2020-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE | UK (CAMBRIDGE) | coordinator | 148˙728.00 |
Modern electronic devices have flourished because of the relentless development of new lithographic processes that result in ever higher and more compact computing power. However, this increases the amount of heat generated in a decreasing volume. As a result the computing power of many modern processors is truncated to avoid thermal damage.
The preferred cooling technology for portable electronic devices are heat pipes. While this technology allows for impressive cooling performances, heat pipes have essentially remained unchanged for the past four decades, and are unable to satisfy the cooling requirements of modern processors. This project seeks to maximize the performance of heat pipes made using a new ultra-fast co-electroplating process that allows for the fabrication of an entirely new type of heat pipe material. Specifically, the developed process allows fabrication of 3D foams with microscale geometries (microfoams) that are made out of a carbon nanotube-copper composite. These foams exhibit capillary driven flowrates 250% that of commercial heat pipe foams, which is expected to provide a similar step-change improvement in heat pipe cooling power. The fabrication process itself is also disruptive because it enables an unprecedented control over the metal foam porosity and leverages the ultra-high thermal conductivity of the used nanoparticles. Further, our process is more energy efficient than current thermal sintering processes and it potentially allows for a continuous fabrication process.
Because of the combined advantages in cooling performance and efficiency of the manufacturing process, this developed technology could displace current heat pipes. However, to take this technology forward, it requires support from this ERC-POC project to study the scale-up of the manufacturing process as well as to develop heat pipe demonstrators.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HEAT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "HEAT" are provided by the European Opendata Portal: CORDIS opendata.