Opendata, web and dolomites

QuSLAM SIGNED

Quantum simulation of strong interaction of light and matter

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "QuSLAM" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 131˙104 €
 EC max contribution 131˙104 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 131˙104.00

Map

 Project objective

Quantum optics describes the emission and absorption of radiation by quantum systems. The most interesting effects of the coupling between quantum emitters and their environment (a bath) appear when this coupling becomes strong. If multiple quantum emitters are coupled strongly to the same bath, the emitters themselves interact strongly via the bath, opening the way to engineered many-body quantum systems with interesting radiative properties, such as directional emission, chirality, and subradiance. However, fundamental and technical issues limit the coupling strength achievable with state-of-the-art experimental platforms: emitters placed in microcavities or coupled to nanophotonic structures.

To circumvent these issues, the applicant proposes to realize an analog quantum simulation of quantum emitters strongly coupled to baths with engineered band structures in one and two dimensions. In this quantum simulation all relevant parameters will be arbitrarily tunable allowing the realization of all system regimes, including the strong coupling regime. This tunability will be achieved by replacing the quantum emitter with an artificial two-level quantum system. Ultracold strontium atoms trapped in optical lattices will be used for this purpose. The implemented quantum simulator will be used to realize and directly image bound states in one and two dimensions that could enable strong long-range atom-atom interactions. Furthermore, by tailoring the emission direction and dynamics of multiple emitters in 1D and 2D, unprecedentedly long-lived subradiant states will be engineered, with applications in precision measurements, metrology, and quantum computing. This project will also open up the possibility of going beyond the physics of photonic baths and engineering both noninteracting and strongly-interacting baths, consisting of either bosonic or fermionic particles, that have no analog in quantum optics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUSLAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUSLAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More