Opendata, web and dolomites

MY MITOCOMPLEX SIGNED

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MY MITOCOMPLEX" data sheet

The following table provides information about the project.

Coordinator
CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.) 

Organization address
address: CALLE MELCHOR FERNANDEZ ALMAGRO 3
city: MADRID
postcode: 28029
website: www.cnic.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 172˙932 €
 EC max contribution 172˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.) ES (MADRID) coordinator 172˙932.00

Map

 Project objective

The emerging field of immunometabolism has a strong potential to uncover novel targets for the manipulation of immune cell function. Myeloid cells are involved in innate and adaptive immunity and tolerance, therefore the identification of pathways that regulate their activity may have implications in many diseases. Research in the host laboratory has focused on how sensing of innate stimuli (infections and tissue damage) lead to mitochondrial adaptations in myeloid cells. These mitochondrial adaptations can influence the electron transport chain (ETC), resulting in differences in reactive oxygen species (ROS) production, ATP synthesis, redox balance and metabolites. The ETC consists of four respiratory complexes (CI-CIV), which can, excluding CII, form super complexes. The formation of these super complexes is regulated and this regulation has been shown to have biological relevance. However, whether mitochondrial SC organization couples to regulation of immune cell function and the molecular mechanisms involved is not known. Therefore, we propose to investigate how mitochondrial SC formation affects macrophage and dendritic cell function. Identification of the mechanisms connecting mitochondrial adaptations and myeloid cell function could potentially unveil therapeutic targets. Much immunometabolism studies could be improved by in vivo models, therefore we aim at studying the effects of SC formation regulation in vivo.

We intend to use targeted and non-targeted approaches to address this question. A mouse model that exhibits a non-active SC assembly factor (SCAF1) will be a key tool to address this question in vivo. The non-independent approach includes state-of-the-art metabolomics and transcriptomics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MY MITOCOMPLEX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MY MITOCOMPLEX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More