Explore the words cloud of the WASCOSYS project. It provides you a very rough idea of what is the project "WASCOSYS" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙338˙500 € |
EC max contribution | 1˙338˙500 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2014-STG |
Funding Scheme | ERC-STG |
Starting year | 2015 |
Duration (year-month-day) | from 2015-03-01 to 2020-06-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (MUENCHEN) | coordinator | 1˙338˙500.00 |
2 | RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN | DE (AACHEN) | participant | 0.00 |
Strongly correlated quantum systems, which are at the heart of many open problems in condensed matter, quantum chemistry, or high-energy physics, are challenging to understand due to their intricate entanglement structure. Quantum information theory provides the right framework to characterize highly entangled states and has given rise to the class of Tensor Network States, which capture the entanglement structure of strongly correlated systems by building the global wavefunction from local tensors and provide an efficient description of their low-energy states.
In this project, we will develop a framework for the systematic study of strongly correlated systems using exact wavefunctions based on Tensor Network States. It will give us the tools to construct controlled families of states by encoding the relevant structure of the system directly into the wavefunction, rather than a Hamiltonian, and to study their behavior. Since the tensor describing the wavefunction also gives rise to an associated Hamiltonian, this establishes a framework for building solvable models with the tensor as the new central object.
The novelty of our approach lies in the fact that quantum information gives us the tools to systematically construct wavefunctions for general strongly correlated systems, while at the same time, encoding the structure of the problem directly into the wavefunction results in small families of states with a direct physical interpretation of the parameters, unlike for fully variational approaches.
We will apply our framework to study the physics of a range of strongly correlated models, in particular frustrated fermionic and spin systems, in order to understand the possible physics they can exhibit. This will enhance our understanding of the physics of strongly correlated systems, and, together with numerical results, experimental findings, and quantum simulations, ultimately lead to new applications and materials based on strongly correlated matter.
year | authors and title | journal | last update |
---|---|---|---|
2018 |
Christoph Sünderhauf, David Pérez-GarcÃa, David A. Huse, Norbert Schuch, J. Ignacio Cirac Localization with random time-periodic quantum circuits published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.98.134204 |
Physical Review B 98/13 | 2019-10-03 |
2018 |
Anna Hackenbroich, Antoine Sterdyniak, Norbert Schuch Interplay of SU(2), point group, and translational symmetry for projected entangled pair states: Application to a chiral spin liquid published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.98.085151 |
Physical Review B 98/8 | 2019-10-03 |
2017 |
Gemma De las Cuevas, J. Ignacio Cirac, Norbert Schuch, David Perez-Garcia Irreducible forms of matrix product states: Theory and applications published pages: 121901, ISSN: 0022-2488, DOI: 10.1063/1.5000784 |
Journal of Mathematical Physics 58/12 | 2019-10-03 |
2018 |
Gemma De las Cuevas, Norbert Schuch, David Perez-Garcia, J. Ignacio Cirac Continuum limits of matrix product states published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.98.174303 |
Physical Review B 98/17 | 2019-10-03 |
2018 |
Andras Molnar, Yimin Ge, Norbert Schuch, J. Ignacio Cirac A generalization of the injectivity condition for projected entangled pair states published pages: 21902, ISSN: 0022-2488, DOI: 10.1063/1.5007017 |
Journal of Mathematical Physics 59/2 | 2019-10-03 |
2018 |
Mohsin Iqbal, Kasper Duivenvoorden, Norbert Schuch Study of anyon condensation and topological phase transitions from a Z 4 topological phase using the projected entangled pair states approach published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.97.195124 |
Physical Review B 97/19 | 2019-10-03 |
2018 |
Henrik Dreyer, J. Ignacio Cirac, Norbert Schuch Projected entangled pair states with continuous virtual symmetries published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.98.115120 |
Physical Review B 98/11 | 2019-10-03 |
2018 |
Andras Molnar, José Garre-Rubio, David Pérez-GarcÃa, Norbert Schuch, J Ignacio Cirac Normal projected entangled pair states generating the same state published pages: 113017, ISSN: 1367-2630, DOI: 10.1088/1367-2630/aae9fa |
New Journal of Physics 20/11 | 2019-10-03 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WASCOSYS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "WASCOSYS" are provided by the European Opendata Portal: CORDIS opendata.