Opendata, web and dolomites

PERFECTION SIGNED

Probing mechanisms of pathogen effector recognition by plant Resistance proteins to elevate defence gene activation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PERFECTION project word cloud

Explore the words cloud of the PERFECTION project. It provides you a very rough idea of what is the project "PERFECTION" about.

leads    lab    receptor    effector    transcription    stresses    mediate    rrs1    regulation    regulate    interact    poorly    complementary    transgenic    correlated    salicylic    activate    changing    status    rps4    locus    understand    implicated    epitope    unknown    independently    single    favor    trigger    mass    resistance    china    acid    genetics    proteins    cells    tightly    gene    chromatin    pair    basal    certain    expression    extracellular    host    spectrometry    alter    dramatic    immune    popp2    environment    association    canada    reprogramming    immunoprecipitation    pathogen    carry    encounters    biosynthesis    activation    rigorously    hours    tsl    pathogens    mrna    hypothesis    elevates    mechanisms    recognition    transcriptional    cellular    intracellular    induction    complexes    loci    functions    reported    genes    effectors    plant    regions    composition    arabidopsis    appropriate    protein    tagged    defence    genome    detecting    abundance    activated    rapid    model    expertise   

Project "PERFECTION" data sheet

The following table provides information about the project.

Coordinator
THE SAINSBURY LABORATORY 

Organization address
address: Norwich Research Park, Colney Lane
city: NORWICH
postcode: NR47UH
website: http://www.tsl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.tsl.ac.uk/staff/pingtao-ding/
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE SAINSBURY LABORATORY UK (NORWICH) coordinator 183˙454.00

Map

 Project objective

Plant cells tightly regulate gene transcription in response to a changing environment. Stresses, such as pathogen encounters, lead to dramatic transcriptional reprogramming to favor defence activation over basal cellular functions. For effective defence, cells must rapidly alter defence gene mRNA abundance. How extracellular and intracellular recognition of plant pathogens trigger appropriate changes in host mRNA abundance is poorly understood. Upon recognition of pathogen effectors, resistance proteins activate plant defence by unknown mechanisms. My host lab recently reported that the Arabidopsis Resistance gene pair RPS4/RRS1-R elevates expression of certain defence genes, such as those required for salicylic acid biosynthesis, within four hours of detecting PopP2 effector in Arabidopsis. The main goal of this proposal is to understand how effector recognition by RPS4/RRS1-R leads to rapid defence gene induction. We will test the hypothesis that RPS4/RRS1-R proteins directly interact with gene loci that are activated during this process. I will use transgenic Arabidopsis that carry a single genome locus with independently epitope-tagged RPS4, RRS1 and other defence-implicated proteins to investigate: (1) changes in composition of the RPS4/RRS1-R protein complex upon effector recognition using mass spectrometry; (2) effector-induced changes in association of the RPS4/RRS1-R proteins with induced genes using chromatin immunoprecipitation; (3) changes in chromatin status at induced gene regions correlated with gene induction and activation of defence by RPS4/RRS1-R. From this project, I will rigorously test an important model, namely that plant immune receptor complexes directly mediate transcriptional reprogramming of defence genes through chromatin changes upon recognition of effectors. I bring highly complementary expertise in genetics and transcriptional regulation of basal defence from China to Canada and now to TSL that is essential for this project’s success.

 Publications

year authors and title journal last update
List of publications.
2017 Pingtao Ding, Jonathan D.G. Jones
Mis-placed Congeniality: When Pathogens Ask Their Plant Hosts for Another Drink
published pages: 116-117, ISSN: 1534-5807, DOI: 10.1016/j.devcel.2017.01.003
Developmental Cell 40/2 2019-06-13
2017 Sung Un Huh, Volkan Cevik, Pingtao Ding, Zane Duxbury, Yan Ma, Laurence Tomlinson, Panagiotis F. Sarris, Jonathan D. G. Jones
Protein-protein interactions in the RPS4/RRS1 immune receptor complex
published pages: e1006376, ISSN: 1553-7374, DOI: 10.1371/journal.ppat.1006376
PLOS Pathogens 13/5 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PERFECTION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PERFECTION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More