Opendata, web and dolomites

Rotary Wing CLFC TERMINATED

Closed-Loop Flow Control to Enhance Aerodynamic and Aeroacoustic Performance of Wind-Turbine Blades

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Rotary Wing CLFC" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAT BERLIN 

Organization address
address: STRASSE DES 17 JUNI 135
city: BERLIN
postcode: 10623
website: www.tu-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website http://www.forschung.tu-berlin.de/eu_buero/menue/foerderprojekte_an_der_tu_berlin/horizont_2020_msca_marie_sklodowska_curie_actions/
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAT BERLIN DE (BERLIN) coordinator 171˙460.00

Map

 Project objective

Aerodynamic loads and noise emitted from rotating blades are of interest in many industrial applications, such as wind-turbines, aircraft propellers, helicopter blades, and cooling fans. This research project aims to achieve, for the first time, a combined aerodynamic and aeroacoustic optimization of rotary wing by experiments conducted in a controlled environment of gusting flow and rotating motion. In the current work focus will be made on wind-turbine applications. Both passive and active flow control technologies will be utilized to enhance the amount of energy harvested from the wind, while improving the aeroacoustic properties. Leading- and trailing-edge serration have proven to be effective in reducing the noise emitted from wind-turbine blades. However, their effectiveness under realistic flow conditions in a controlled environment has not been investigated. These experiments will be used for further development and validation of new aerodynamic and aeroacoustic models. The ultimate and final goal is to apply closed-loop flow control by utilizing a physics based model. Alongside these experiments, innovative and stand-alone technology for data acquisition and control in rotating blade environments will be developed and implemented. This holistic interdisciplinary approach, bringing together the aerodynamic and aeroacoustic behaviour of wind-turbine blades under realistic flow conditions into one comprehensive study is unique and novel, and will lead to major advances in our understanding of rotating blades aerodynamics and aeroacoustics.

 Publications

year authors and title journal last update
List of publications.
2017 Ben-Gida, H., Faran, M., Kogan, T.
Noise reduction of a UAV propeller using grit-type boundary layer tripping
published pages: , ISSN: , DOI:
57th Israel Annual Conference on Aerospace Sciences, Tel-Aviv & Haifa, Israel, March 15-16, 2017 2019-06-14

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ROTARY WING CLFC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ROTARY WING CLFC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

OPTIMISE (2020)

Open data: improving transparency, reproducibility and collaboration in science

Read More