Opendata, web and dolomites

2DSi

Magnetic Sensors based on Two-Dimensional Materials/Si

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "2DSi" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.graphene.manchester.ac.uk/
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-08-03   to  2017-08-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 195˙454.00

Map

 Project objective

Magnetoresistance sensors based on the change in electrical resistance upon an external magnetic field are widely used in day to day applications. The magnetic sensor industry sells billions of dollars worth of sensors every year and there is an ever-growing demand for magnetic sensors with high sensitivity, small size, low power consumption and low cost with compatibility with existing electronic systems. The project aims to develop a new class of highly sensitive magnetoresistance sensors based on doped Si and two dimensional (2D) layered materials, with a focus on single layer graphene and single layer WS2 which could be easily extended to other low dimensional layered materials. This plan will utilize the advantages of tunnelling through SiO2, gate tunability of 2D materials and the geometry of Si to obtain highly sensitive magnetic sensors from Si, which is very unique and novel. The large magnetoresistance observed in graphene by the applicant's group (Gopinadhan et al. Phys. Rev. B 88, 195429 (2013)) can be utilized to get an additional positive change in total resistance per unit applied magnetic field for higher sensitivity. Si can be integrated monolithically, in contrast, 2D layered materials such as graphene possess excellent electrical, thermal and mechanical properties. Its high mobility of carriers are very attractive for high speed applications. The interface between Si and 2D materials are little explored, however there is an enormous technological interest for applications such as graphene-based transparent electrodes in Si solar cells, high speed non-volatile flash memory, microwave switches, voltage controlled diodes, logic devices etc. Furthermore, most of the existing magnetic sensors are electron based and the possibility of both n and p type magnetic sensors due to the electric field tunability of 2D materials may provide new applications such as magnetic sensor and diode (p-n junction) in one active device.

 Publications

year authors and title journal last update
List of publications.
2016 B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu, A. K. Geim
Molecular transport through capillaries made with atomic-scale precision
published pages: , ISSN: 0028-0836, DOI: 10.1038/nature19363
Nature 2019-07-24
2017 Jijo Abraham, Kalangi S. Vasu, Christopher D. Williams, Kalon Gopinadhan, Yang Su, Christie T. Cherian, James Dix, Eric Prestat, Sarah J. Haigh, Irina V. Grigorieva, Paola Carbone, Andre K. Geim, Rahul R. Nair
Tunable sieving of ions using graphene oxide membranes
published pages: , ISSN: 1748-3387, DOI: 10.1038/nnano.2017.21
Nature Nanotechnology 2019-07-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "2DSI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "2DSI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More