Explore the words cloud of the MADDOG project. It provides you a very rough idea of what is the project "MADDOG" about.
The following table provides information about the project.
Coordinator |
QUEEN MARY UNIVERSITY OF LONDON
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Project website | http://maddog.sems.qmul.ac.uk/ |
Total cost | 195˙454 € |
EC max contribution | 195˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2015 |
Duration (year-month-day) | from 2015-09-01 to 2017-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | QUEEN MARY UNIVERSITY OF LONDON | UK (LONDON) | coordinator | 195˙454.00 |
Adjoint based design optimization techniques are widely recognized as having a large potential to revolutionize the design process of modern gasturbines. By applying such techniques, the optimization of the entire gasturbine system with million degrees of freedom is within reach of the current available computational power. Such simulations include inherently all interactions between the different components avoiding sub-optimal designs. However, today’s reality is far from this prospect. Current adjoint design optimization techniques only consider aerodynamic performance, preventing the optimization of complete systems, as they are by their very nature multidisciplinary. This project will develop an adjoint optimization methodology that goes beyond only aerodynamic considerations and includes other disciplines such as structural mechanics and vibration dynamics concurrently for the first time, such that in the longer term optimization of complete systems will be achievable. The key to achieving a true multidisciplinary adjoint design optimization is to work with a master CAD geometry that is shared between all the different disciplines. This differs significantly from the current practice in adjoint techniques, which mainly considers parameterisations that are suitable for only aerodynamic optimizations. The involvement of a master CAD geometry requires the differentiation of a CAD system, until now this has not been performed as CAD systems are invariably proprietary and as such not accessible. In addition, the extension of the methodology to multiple disciplines requires for a highly skilled researcher with a background in aerodynamics as well as structural mechanics. The fellow of this proposal is a research leader at the Von Karman Institute, which has gained significant experience in the area of multidisciplinary design optimization of turbomachinery over the past 9 years and is the developer of a gradient free optimization system which includes a dedicated
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Tom Verstraete, Lasse Müller, Jens-Dominik Müller Adjoint-Based Design Optimisation of an Internal Cooling Channel U-Bend for Minimised Pressure Losses published pages: 10, ISSN: 2504-186X, DOI: 10.3390/ijtpp2020010 |
International Journal of Turbomachinery, Propulsion and Power 2/2 | 2019-06-18 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MADDOG" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MADDOG" are provided by the European Opendata Portal: CORDIS opendata.