Opendata, web and dolomites

DiDi-FaCT SIGNED

Diode Die Fatigue Characterisation and Testing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DiDi-FaCT" data sheet

The following table provides information about the project.

Coordinator
STICHTING NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM 

Organization address
address: Anthony Fokkerweg 2
city: AMSTERDAM
postcode: 1059CM
website: www.nlr.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 399˙785 €
 EC max contribution 399˙785 € (100%)
 Programme 1. H2020-EU.3.4.5.6. (ITD Systems)
 Code Call H2020-CS2-CFP01-2014-01
 Funding Scheme CS2-RIA
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2018-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM NL (AMSTERDAM) coordinator 399˙785.00

Map

 Project objective

Future aircraft will use more electrical power, which increases the use of power electronics. The increased demand for electrical power also means that aircraft electrical generators must be scaled up accordingly. One type of power-electronic components is the power diode, consisting of the semiconductor diode die and a package to provide amongst others the electrical connections. In the case of a three-stage brushless generator, a diode rectifier is part of the rotor. The local environment is very harsh; the diodes must endure high temperatures due to heat generation (in the diodes and also in the rest of the generator) in an already hot engine environment, high rotation-induced compression stress, thermally induced shear stress, and low temperatures when the generator is not running. Still, the diodes must perform reliably with low losses.

New ways of packaging diodes using the bare silicon dies, and also new semiconductor technologies such as silicon carbide are currently finding their way to these harsh-environment applications. Both trends promise large benefits for size, weight, thermal and electrical performance. However, it is not always certain if the new packages and components have sufficient long-term reliability in this harsh environment.

DiDi (FaCT) will accurately model the thermo-mechanical stresses to determine an aging model of the diode dies. In parallel, a dedicated test bench will be developed and used to put multiple diode dies to a long-term combined thermo-mechanical stress test. At the end of the project, DiDi combines all information and delivers an optimised and validated aging model of the dies. The result will be very valuable for users of power electronic dies in harsh environments such as aircraft generators, as it allows to optimise the die package design with due regard to long-term reliability, which in turn paves the way towards large weight and efficiency improvements in generators and other equipment.

 Deliverables

List of deliverables.
Publishable Report on Project technical results Documents, reports 2019-08-29 13:30:10
Report on Communication, Dissemination and Exploitation actions Documents, reports 2019-08-29 13:30:10

Take a look to the deliverables list in detail:  detailed list of DiDi-FaCT deliverables.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DIDI-FACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DIDI-FACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.5.6.)

OPeRATOR (2018)

Modular Platform for Aircraft Flight and Ground Operation

Read More  

2021 GRIP (2019)

Crouzet Next Grip Generation

Read More  

Cr Free REAL (2019)

Development and testing of innovative Cr Free solution for REmoval of Anodic Layers

Read More