Explore the words cloud of the QBox project. It provides you a very rough idea of what is the project "QBox" about.
The following table provides information about the project.
Coordinator |
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 1˙943˙753 € |
EC max contribution | 1˙943˙753 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2015-CoG |
Funding Scheme | ERC-COG |
Starting year | 2016 |
Duration (year-month-day) | from 2016-05-01 to 2021-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE | UK (CAMBRIDGE) | coordinator | 1˙943˙753.00 |
'Ultracold atomic gases offer flexible systems for fundamental studies of both equilibrium and non-equilibrium many-body problems that are relevant across many fields, from condensed matter physics to high-energy physics and astrophysics. In the long run, research on these systems could also lead to practical applications, in the development of novel materials, force sensing, navigation, and quantum information processing.
Traditionally, an important difference between 'conventional' many-body systems and ultracold gases has been that the former are usually spatially uniform, while the latter were produced in harmonic traps. This difference can often be addressed using the local density approximation (LDA), but for studies of some very important problems it is a serious hindrance. In particular, LDA breaks down close to phase transitions, where the correlation length diverges, and where (due to the “critical slowing down” of the system) some of the most interesting non-equilibrium effects also emerge.
Here we propose a comprehensive study of both equilibrium and non-equilibrium many-body phenomena in a homogeneous 39K Bose gas with dynamically tuneable interactions. The use of a homogeneous quantum gas, produced in our newly developed box-like trapping potential (in contrast to the standard setting of a harmonic trap) is a particularly important and unique aspect of this proposal, which will allow for closer connections with both other many-body systems and the theoretical calculations.
We will specifically focus on problems in beyond-mean-field physics and on those that cannot be effectively tackled using a harmonically trapped gas. The outstanding problems we will address range from the 50-year-old equilibrium problem of the critical temperature of an interacting homogeneous gas, to the modern topics of quenches and non-equilibrium (Kibble-Zurek and beyond) critical dynamics, to the largely unexplored problem of the unitary Bose gas. '
year | authors and title | journal | last update |
---|---|---|---|
2018 |
Christoph Eigen, Jake A. P. Glidden, Raphael Lopes, Eric A. Cornell, Robert P. Smith, Zoran Hadzibabic Universal prethermal dynamics of Bose gases quenched to unitarity published pages: 221-224, ISSN: 0028-0836, DOI: 10.1038/s41586-018-0674-1 |
Nature 563/7730 | 2020-01-20 |
2017 |
Christoph Eigen, Jake A. P. Glidden, Raphael Lopes, Nir Navon, Zoran Hadzibabic, Robert P. Smith Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.119.250404 |
Physical Review Letters 119/25 | 2020-01-20 |
2018 |
Richard J. Fletcher, Jay Man, Raphael Lopes, Panagiotis Christodoulou, Julian Schmitt, Maximilian Sohmen, Nir Navon, Robert P. Smith, Zoran Hadzibabic Elliptic flow in a strongly interacting normal Bose gas published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.98.011601 |
Physical Review A 98/1 | 2020-01-20 |
2016 |
Nir Navon, Alexander L. Gaunt, Robert P. Smith, Zoran Hadzibabic Emergence of a turbulent cascade in a quantum gas published pages: 72-75, ISSN: 0028-0836, DOI: 10.1038/nature20114 |
Nature 539/7627 | 2020-01-20 |
2017 |
Raphael Lopes, Christoph Eigen, Nir Navon, David Clément, Robert P. Smith, Zoran Hadzibabic Quantum Depletion of a Homogeneous Bose-Einstein Condensate published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.119.190404 |
Physical Review Letters 119/19 | 2020-01-20 |
2017 |
Raphael Lopes, Christoph Eigen, Adam Barker, Konrad G. H. Viebahn, Martin Robert-de-Saint-Vincent, Nir Navon, Zoran Hadzibabic, Robert P. Smith Quasiparticle Energy in a Strongly Interacting Homogeneous Bose-Einstein Condensate published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.118.210401 |
Physical Review Letters 118/21 | 2020-01-20 |
2017 |
Richard J. Fletcher, Raphael Lopes, Jay Man, Nir Navon, Robert P. Smith, Martin W. Zwierlein, Zoran Hadzibabic Two- and three-body contacts in the unitary Bose gas published pages: 377-380, ISSN: 0036-8075, DOI: 10.1126/science.aai8195 |
Science 355/6323 | 2020-01-20 |
2016 |
Christoph Eigen, Alexander L. Gaunt, Aziza Suleymanzade, Nir Navon, Zoran Hadzibabic, Robert P. Smith Observation of Weak Collapse in a Bose-Einstein Condensate published pages: , ISSN: 2160-3308, DOI: 10.1103/PhysRevX.6.041058 |
Physical Review X 6/4 | 2020-01-20 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QBOX" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "QBOX" are provided by the European Opendata Portal: CORDIS opendata.