Opendata, web and dolomites

2MoveMate4Melanoma

A treatment for BRAF inhibitor resistant melanoma

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "2MoveMate4Melanoma" data sheet

The following table provides information about the project.

Coordinator
STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS 

Organization address
address: PLESMANLAAN 121
city: AMSTERDAM
postcode: 1066 CX
website: www.nki.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 149˙750 €
 EC max contribution 149˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2017-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS NL (AMSTERDAM) coordinator 149˙750.00

Map

 Project objective

Some 50% of human melanoma tumors have activating mutations in the BRAF gene. BRAF inhibitor drugs given either alone or in combination with MEK inhibitors have improved progression-free and overall survival in patients with BRAF mutant metastatic melanoma. However, drug resistance invariably limits the duration of clinical benefit of such treatments and is almost always associated with re-activation of signaling through the MAP kinase pathway in the presence of drug due to secondary mutations in the pathway. This highlights the urgent need to develop strategies to treat melanomas that have developed resistance to BRAF and/or MEK inhibitors. As part of an ERC advanced grant, my laboratory has shown that BRAF inhibitor withdrawal in melanomas that have developed resistance to BRAF inhibitors leads to a transient growth arrest that is the consequence of temporary hyperactivation of signaling through the MAP kinase pathway, explaining the so called “drug holiday effect”. We have also found that subsequent treatment of such BRAF inhibitor resistant melanomas with Histone DeACetylase inhibitor drugs (HDACi) leads to persistent hyperactivation of MAP kinase signaling, causing both chronic proliferation arrest and cell death, ultimately leading to complete regression of BRAF-inhibitor resistant melanomas in mice. We propose here to perform a proof of concept study in at least 10 evaluable melanoma patients that, after proven initial tumor response, have developed resistance to BRAF inhibitors to validate that subsequent treatment of such patients with an HDACi drug will result in durable responses. Translational studies on tumor biopsies taken before, during and after HDACi treatment will be performed to study the cellular effects of HDACi treatment. Our goal is to provide initial proof of concept in patients for use of this sequential BRAFi-HDACi therapy as the treatment of choice for the some 40,000 BRAF mutant melanomas that are diagnosed in the EU annually.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "2MOVEMATE4MELANOMA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "2MOVEMATE4MELANOMA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More