Opendata, web and dolomites

Re-SENSE SIGNED

RESOURCE-EFFICIENT SENSING THROUGH DYNAMIC ATTENTION-SCALABILITY

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Re-SENSE project word cloud

Explore the words cloud of the Re-SENSE project. It provides you a very rough idea of what is the project "Re-SENSE" about.

leg    human    tasting    memory    people    intel    scarce    latency    monitoring    sorting    lips    scalability    efficiency    streams    understand    capture    sensory    nowadays    maximum    few    sensors    massive    rigid    machine    jointly    drastically    always    judgements    levels    limited    bandwidth    sense    senses    labs    combined    throughput    fuse    implementing    mental    interfacing    hard    capabilities    observe    algorithms    coming    perfectly    computational    combination    equipped    workloads    scalable    demonstrated    tuning    seamlessly    it    critical    constrained    pi    maximize    inference    effort    processors    masters    epilepsy    resource    berkeley    robotics    trouble    reconfigurable    kuleuven    talk    preventing    eyes    devote    energy    dynamically    expertise    uc    stand    humans    fusion    wearables    cell    data    sensing    biomedical    sensor    gained    extract    function    food    processor    combine    learning    hardware    intriguingly    had    dynamic    amount    close    electronics    fits    re    smelling   

Project "Re-SENSE" data sheet

The following table provides information about the project.

Coordinator
KATHOLIEKE UNIVERSITEIT LEUVEN 

Organization address
address: OUDE MARKT 13
city: LEUVEN
postcode: 3000
website: www.kuleuven.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 1˙484˙562 €
 EC max contribution 1˙484˙562 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-03-01   to  2022-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) coordinator 1˙484˙562.00

Map

 Project objective

It is hard to stand on one leg if we close our eyes. We have trouble tasting food without smelling. And when we talk with other people, we observe their lips to understand them better. We, humans, are masters in sensor fusion as we can seamlessly combine information coming from different senses to improve our judgements. Intriguingly, in order to fuse information efficiently, we do not always devote the same level of attention or mental effort to each of the many sensory streams available to us. This dynamic attention-scalability allows us to always extract the maximum amount of relevant information under our limited human computational bandwidth.

Would it not be great if electronics had the same capabilities? While many devices are nowadays equipped with a massive amount of sensors, they typically cannot effectively fuse more than a few of them. The rigid way in which sensory data is combined results in large computational workloads, preventing effective multi-sensor fusion in resource-constrained applications such as robotics, wearables, biomedical monitoring or user interfacing.

The Re-SENSE project will bring attention-scalable sensing to resource-scarce devices, which are constrained in terms of energy, throughput, latency or memory resources. This is achieved by jointly: 1) Developing resource-aware inference and fusion algorithms, which maximize information capture in function of hardware resource usage, dynamically tuning sensory attention levels 2) Implementing dynamic, wide-range resource-scalable inference processors, allowing to exploit this attention-scalability for drastically improved efficiency The attention-scalable sensing concept will be demonstrated in 2 highly resource-constrained applications: a) latency-critical cell sorting and b) energy-critical epilepsy monitoring. This combination of processor design, reconfigurable hardware and embedded machine learning fits perfectly to the PI’s expertise gained at Intel Labs, UC Berkeley and KULeuven.

 Publications

year authors and title journal last update
List of publications.
2019 L Galindez Olascoaga, W. Meert, M. Verhelst, G. Van den Broeck
Towards Hardware-Aware Tractable Learning of Probabilistic Models (workshop version)
published pages: , ISSN: , DOI:
3rd Tractable Probabilistic Modeling Workshop colocated with the 36th International Conference on Machine Learning (TPM-ICML 2019) 2019-11-08
2019 Nimish Shah, Laura I. Galindez Olascoaga, Wannes Meert and Marian Verhelst
PRU: Probabilistic Reasoning processing Unit for resource-efficient AI
published pages: , ISSN: , DOI:
HotChips 2019-10-29
2017 Marian Verhelst, Bert Moons
Embedded Deep Neural Network Processing: Algorithmic and Processor Techniques Bring Deep Learning to IoT and Edge Devices
published pages: 55-65, ISSN: 1943-0582, DOI: 10.1109/mssc.2017.2745818
IEEE Solid-State Circuits Magazine 9/4 2019-10-29
2019 Laura I. Galindez Olascoaga, Wannes Meert, Nimish Shah, Marian Verhelst, Guy Van den Broeck
Towards Hardware-Aware Tractable Learning of Probabilistic Models
published pages: , ISSN: , DOI:
Accepted for Publication at Proceedings of the Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019). 2019-10-29
2018 Thomas Bos, Komail Badami, Wim Dehaene, Marian Verhelst
Architecture optimization for energy-efficient resolution-scalable 8–12-bit SAR ADCs
published pages: 437-448, ISSN: 0925-1030, DOI: 10.1007/s10470-018-1235-0
Analog Integrated Circuits and Signal Processing 97/3 2019-10-29
2018 Laura Galindez, Komail Badami, Jonas Vlasselaer, Wannes Meert, Marian Verhelst
Dynamic Sensor-Frontend Tuning for Resource Efficient Embedded Classification
published pages: 1-1, ISSN: 2156-3357, DOI: 10.1109/JETCAS.2018.2850451
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2019-06-13
2018 Thomas Bos, Komail Badami, Wim Dehaene, Marian Verhelst
Architecture optimization for energy-efficient resolution-scalable 8–12-bit SAR ADCs
published pages: , ISSN: 0925-1030, DOI: 10.1007/s10470-018-1235-0
Analog Integrated Circuits and Signal Processing 2019-06-13
2018 Koen Goetschalckx, Bert Moons, Steven Lauwereins, Martin Andraud, Marian Verhelst
Optimized Hierarchical Cascaded Processing
published pages: 1-1, ISSN: 2156-3357, DOI: 10.1109/JETCAS.2018.2839347
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RE-SENSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RE-SENSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More