Opendata, web and dolomites

Report

Teaser, summary, work performed and final results

Periodic Reporting for period 1 - HEMPT-NG (High Efficiency Multistage Plasma Thruster – Next Generation)

Teaser

The objective of the HEMPT-NG consortium is to develop, simulate, build and test the High Efficiency Multistage Plasma Thruster – Next Generation (HEMPT-NG) to operate a GEO-(Telecom- und Navigation) and LEO-Thruster for used for station keeping, orbit raising and orbit...

Summary

The objective of the HEMPT-NG consortium is to develop, simulate, build and test the High Efficiency Multistage Plasma Thruster – Next Generation (HEMPT-NG) to operate a GEO-(Telecom- und Navigation) and LEO-Thruster for used for station keeping, orbit raising and orbit manoeuvring of satellites.
And more globally: the HEMPT-NG project will contribute to increase the competitiveness of space electrical propulsion systems developed in Europe by developing an integrated solution based on the HEMPT (Highly Efficient Multistage Plasma Thruster) technology for both the LEO and Telecom/Navigation satellites.

This project will increase the capacity to compete within a worldwide market in term of cost and performances. The availability of such competitive electrical propulsion system is a key to the success of the European space sector and the emerging space applications. HEMPT-NG will also reduce dependency to foreign supplier to ensure an independent access to space in Europe.

So the interest of the whole consortium (Aerospazio Tecnologie SARL, Airbus Defence & Space GmbH, Ernst-Moritz-Arndt-University, OHB System AG, Thales Alenia Space Belgium, Thales Alenia Space France, Thales Alenia Space Germany, Thales Alenia Space UK and Thales Germany) is to increase the competitiveness of space electrical propulsion systems developed in Europe by developing an integrated solution based on the HEMPT technology for both the LEO and GEO satellites.

Work performed

The system design for the both application lines LEO and GEO has been performed. Respective requirement definition has reached maturity to start creation of the hardware deliverables.

A 700W thruster module has been designed and will be ready for test soon that evens out the performance difference to thrusters of the same power class on the market. The module is designed for high volume production and is adequate in particular for mega constellations. It maintains the inherent advantages of the HEMPT-technology such as flexibility, simplicity and high lifetime. The concept can be transferred to larger scaled thrusters of higher power in the GEO application inline within this program.

A LEO-PPU (Power Processing Unit) optimized for cost has been designed. It will allow to use the 700W thruster module among others in the different LEO applications together with the new innovative fluidic control elements.

A flow control system comprised by a high and a low pressure part has been designed and first models are currently in production. The units are reduced in size, Cost, mass in comparison with traditional components and provide better control and manufacturability.

Final results

The HEMPT technology has significant advantages compared to the other electrical propulsion technologies that are currently available (Hall effect thrusters and Grid ion thrusters). The lower mass and the ability to choose between high thrust and low propellant consumption operations will allow lighter or more powerful satellites. The absence of erosion will significantly improve the life duration of the thrusters. And finally the replacement of the xenon by the krypton that is more common in the atmosphere will lower the economic and ecological cost for satellite propellant.

Website & more info

More info: http://www.hempt-ng.eu.