Explore the words cloud of the NGECA project. It provides you a very rough idea of what is the project "NGECA" about.
The following table provides information about the project.
Coordinator |
UNIVERSITY COLLEGE LONDON
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 195˙454 € |
EC max contribution | 195˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2015 |
Funding Scheme | MSCA-IF-EF-RI |
Starting year | 2016 |
Duration (year-month-day) | from 2016-11-01 to 2020-06-01 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITY COLLEGE LONDON | UK (LONDON) | coordinator | 195˙454.00 |
A remarkable feature of the brain is its ability to adapt to changing environmental conditions. Modulation of synaptic strength and neuronal circuitry underlies experience-dependent learning, and requires widespread changes in gene expression. Following neuronal depolarisation, intracellular signalling results in rapid induction of many activity-regulated genes (ARGs). There are numerous interconnected levels of gene regulation; one critical aspect relates to the three-dimensional conformation of chromosomes within the nucleus. Looping of genes to regulatory regions and to other genes is required for transcriptional activation in other cell types, but remains largely unexplored in neurons. In this proposal, I will investigate how the genome architecture changes during neuronal depolarisation, and how this influences activity-induced transcription and neuronal plasticity. I will first map the genomic interactions of ARGs in neurons before and after depolarisation. This experimental approach will allow identification of enhancer-promoter loops and multi-gene complexes in an unbiased manner. Single-cell imaging studies will be performed to quantify the frequency of interactions across individual neurons. I will use super-resolution microscopy to simultaneously analyse multiple loci with high precision, providing unprecedented detail of gene interactions in response to neuronal activity. Finally, I will use genome editing to disrupt specific chromosomal contacts and evaluate the transcriptional induction of associated genes. I will assess whether loss of genomic contacts affects dendritic growth, a process associated with neuronal plasticity and dependent on ARG induction, to understand the biological implications of chromosome looping. The aim of this project is to discover novel molecular mechanisms that govern transcription during neuronal activation, which is critical in experience-dependent learning.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NGECA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NGECA" are provided by the European Opendata Portal: CORDIS opendata.
Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?
Read MoreLeveraging the potential of historical spy satellite photography for ecology and conservation
Read MoreArchitecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome
Read More