Opendata, web and dolomites

FraMoS TERMINATED

Multi-resolution Fracture Models for High-strength Steels: Fully Ductile Fracture to Quasi-cleavage Failure in Hydrogen Environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FraMoS project word cloud

Explore the words cloud of the FraMoS project. It provides you a very rough idea of what is the project "FraMoS" about.

dislocations    bottlenecks    influence    cleavage    fidelity    microcracks    oxford    employing    limitations    incorporate    continuum    era    3d    realistic    he    mechanisms    linkage    accelerate    contribution    international    length    trapping    tomographic    virtual    spectrum    durable    environment    ductile    hampered    unraveling    pursuit    hydrogen    quest    assisted    tougher    cycle    mechanics    complete    nucleation    cracking    particles    predictive    least    predictions    crack    materials    mechanism    scales    heterogeneities    macroscopic    fundamental    cover    hss    tip    microstructure    describing    coalescence    structure    toughness    recognition    lack    expensive    micromechanical    tools    fracture    void    describe    computing    models    quasi    propagation    lieu    alloys    initiated    exascale    embrittlement    initiation    entire    trip    interactions    twip    relations    computational    microstructural    eliminating    course    damage    devastating    stronger    destructive    deficiencies    accounting    diffusion    recent   

Project "FraMoS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.hems.ox.ac.uk
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-12-01   to  2018-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 195˙454.00

Map

 Project objective

Recent advances in Computational Mechanics are towards the development of predictive tools that can accelerate the 'Materials Development Cycle' by unraveling the linkage between macroscopic properties and microstructure. The availability of 3D tomographic tools and the era of Exascale computing have initiated the quest to develop stronger, tougher and more durable alloys by employing 'virtual predictions' in lieu of expensive destructive testing. However, our lack of understanding of the 'structure-toughness’ relations is one of the main bottlenecks in this pursuit. Moreover, the uptake of some of these new alloys (TRIP, TWIP etc) is hampered by the concerns of hydrogen (H) induced cracking. Existing models have limitations in describing the role of microstructural heterogeneities on mechanisms of fracture in HSS. The proposed research will develop high fidelity continuum models to cover the entire spectrum of mechanisms from fully ductile fracture to quasi-cleavage failure of HSS in H-environment. Among the various mechanisms of H-assisted cracking, hydrogen embrittlement (HE) is one of the most devastating, yet least understood, mechanism of failure in HSS. In this work, realistic models of void nucleation accounting for the dislocations interactions with the second phase particles will be developed. The proposed models of void growth and coalescence will incorporate the microstructural length scales, thus, eliminating the deficiencies of the existing 'damage models'. The micromechanical models of HE developed in this work will incorporate the influence of hydrogen on the initiation and propagation of microcracks leading to complete failure. These models will be integrated with the most advanced models of H-diffusion and trapping (being developed at Oxford) to describe the detailed mechanism of fracture at crack tip in HSS. It is expected that this work will bring, in due course, significant international recognition for its fundamental and applied contribution

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FRAMOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FRAMOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

InterTJRPB (2019)

The Interplay between Transitional Justice and Reconciliation in Peacebuilding

Read More  

EuroDipl (2020)

European Diplomacy Practices post-Lisbon: Adding Value through Cooperation

Read More