Opendata, web and dolomites

LENSD

Liquid Exfoliation of Nanomaterials using Spinning Discs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LENSD project word cloud

Explore the words cloud of the LENSD project. It provides you a very rough idea of what is the project "LENSD" about.

mono    disc    fluid    imperial    aligned    personalised    infrared    broaden    liquid    industrial    simulating    imagery    defects    two    mechanics    material    disciplines    techniques    thermal    boron    materials    layer    continuous    energy    velocimetry    engineering    experiments    graphene    experimentally    few    dimensional    films    actions    inter    nanosheet    particle    london    receive    career    holistic    flows    investigation    numerical    limitations    interfacial    optical    spinning    insufficient    yield    poor    introduction    intensification    college    mobility    shear    biggest    flow    complimentary    numerically    molybdenum    multiple    fellowship    remarkable    nanotechnology    size    lt    nitride    exfoliation    assist    image    nanomaterials    extensive    society    rates    technologies    microscopy    received    multiphase    disulfide    nanoscale    expertise    decade    demonstrated    electronics    opto    training    chemical    speed    phenomena    2d    scalable    sustainable    wt    sectoral    thin    create    researcher    cooperation    transport    frequently    thermography   

Project "LENSD" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-01-09   to  2019-01-08

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 195˙454.00

Map

 Project objective

Two-dimensional (2D) nanomaterials have received significant attention over the past decade due to their remarkable material properties. Graphene is the most frequently studied, however a range of other 2D materials such as molybdenum disulfide and boron nitride have also demonstrated properties which will help society advance in areas from opto-electronics to sustainable energy. One of the biggest challenges currently facing 2D nanomaterials is scalable production. Current exfoliation processes are insufficient for industrial scale production due to high energy requirements, poor yield (typically < 5 wt%), introduction of material defects and low production rates (< 6 g/h). This project aims to address these process limitations. A novel liquid exfoliation approach will be investigated, using continuous flow over a spinning disc to create mono- and few-layer materials. The research activities will provide a new holistic insight into shear-induced liquid exfoliation, by experimentally and numerically examining how the fluid mechanics and multiphase transport phenomena over the spinning disc affect material characteristics at the nanoscale. The investigation involves cooperation between multiple disciplines. Experiments include the optical techniques of infrared thermography, high-speed imagery and particle image velocimetry. The researcher will receive extensive training in advanced numerical methods for simulating thin liquid films and interfacial flows at Imperial College London. Training in microscopy techniques will also be completed for the measurement of nanosheet defects and size. These research activities will assist the development of future liquid exfoliation technologies and are aligned with personalised actions to advance career development. The fellowship will broaden the researcher's technical and complimentary expertise, and facilitate inter-sectoral mobility from thermal to chemical engineering, nanotechnology and process intensification.

 Publications

year authors and title journal last update
List of publications.
2018 U. Farooq, J. Stafford, C. Petit, and O. K. Matar
3D Simulations of Falling Films on the Inner Surface of a Rotating Cylinder
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08
2018 Jason Stafford, Omar Matar
Evolution of waves in inertia-dominated thin liquid films flowing over a rapidly rotating disc
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08
2018 Jason Stafford, Omar Matar, Camille Petit
Producing Graphene at Scale
published pages: 24-28, ISSN: 0302-0797, DOI:
The Chemical Engineer 930/31 2019-10-08
2018 Jason Stafford, Andrius Patapas, Nwachukwu Uzo, Omar K. Matar, Camille Petit
Towards scale-up of graphene production via nonoxidizing liquid exfoliation methods
published pages: 3246-3276, ISSN: 0001-1541, DOI: 10.1002/aic.16174
AIChE Journal 64/9 2019-10-08
2018 N. Uzo, J. Stafford, C. Petit, O. K. Matar
Utilising the hydrodynamics of thin liquid films flowing over a spinning disc to produce graphene
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LENSD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LENSD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More