Opendata, web and dolomites

SYMCELLS SIGNED

Resolving the molecular mechanisms of intracellular coral-algal symbiosis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SYMCELLS project word cloud

Explore the words cloud of the SYMCELLS project. It provides you a very rough idea of what is the project "SYMCELLS" about.

prevailing    reefs    function    economically    cellular    pull    host    transport    corals    anemone    distinguish    many    underlying    aiptasia    machinery    interactions    symbiont    phagosomes    ecological    stably    remarkable    pathogen    metabolic    record    generate    model    cells    advantages    animals    candidate    pathogens    biological    ecosystems    receptors    surprisingly    mechanisms    phagocytosis    assays    intractable    proteomics    explore    clearance    survival    mechanistic    time    reside    proteins    provision    intracellular    models    nutrients    little    manipulation    integrate    synthesize    leverage    acquire    first    understand    destruction    habitats    cholesterol    uncover    functionally    nutrient    sterols    imaging    significance    fixed    translocation    view    coral    photosynthetically    poor    unlike    sugars    gain    map    symbiosis    algal    interacting    symbionts    persistence    organism    fundamental    cell    acquisition    live    cnidarians    phagosome    ecologically    expertise    microbes    establishment    phagolysosomal    substitute    phagocytosing    culture    dependence    underpinning    molecular    sterol    algae   

Project "SYMCELLS" data sheet

The following table provides information about the project.

Coordinator
RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG 

Organization address
address: SEMINARSTRASSE 2
city: HEIDELBERG
postcode: 69117
website: www.uni-heidelberg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙272˙485 €
 EC max contribution 2˙272˙485 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-06-01   to  2022-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG DE (HEIDELBERG) coordinator 2˙272˙485.00

Map

 Project objective

Many cells stably integrate microbes to gain ecological advantages for the organism. A remarkable example is the symbiosis between corals and algae, whose provision of photosynthetically fixed nutrients enables coral survival in nutrient-poor habitats. To establish symbiosis, coral cells acquire symbionts via phagocytosis, a process often used for pathogen clearance in other animals. Symbionts reside in phagosomes, and the prevailing view is that, similar to some pathogens, symbionts avoid destruction via phagolysosomal manipulation. Yet, unlike pathogens, symbionts provide nutrients to their host, and this may be key for intracellular persistence. Most research on nutrient translocation has focused on sugars, but surprisingly, sterols may be significant because cnidarians cannot synthesize cholesterol. However, little is known about the underlying molecular mechanisms of symbiosis establishment. Because corals are intractable cell biological models, I will leverage our unique resources and expertise to uncover fundamental aspects of symbiont acquisition and metabolic dependence using the emerging model anemone Aiptasia. To investigate symbiont acquisition (Objective 1), I will distinguish symbiont-phagocytosing cells, test candidate symbiont receptors by gain- and loss-of-function, record symbiont/cell interactions by live-imaging, and generate a symbiosis cell culture system. To understand the significance of symbiont-derived sterols (Objective 2), I will map cellular sterol utilization and identify the sterol transport machinery, test whether symbiont sterols can functionally substitute cholesterol, identify novel sterol-interacting proteins by pull-down assays, and explore symbiont persistence mechanisms using comparative phagosome proteomics. This proposal will for the first time provide a mechanistic understanding of coral-algal symbiosis establishment, a crucial process underpinning coral reefs, economically and ecologically important ecosystems.

 Publications

year authors and title journal last update
List of publications.
2019 Marie R. Jacobovitz, Sebastian Rupp, Philipp A. Voss, Sebastian G. Gornik, Annika Guse
Dinoflagellate symbionts escape vomocytosis by host cell immune suppression
published pages: , ISSN: , DOI: 10.1101/864579
2020-02-05
2018 Victor A. S. Jones, Madeline Bucher, Elizabeth A. Hambleton, Annika Guse
Microinjection to deliver protein, mRNA, and DNA into zygotes of the cnidarian endosymbiosis model Aiptasia sp.
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-34773-1
Scientific Reports 8/1 2019-05-27
2018 Elizabeth Hambleton, Arnold Shivas Jones, Ira Maegele, David Kvaskoff, Timo Sachsenheimer, Annika Guse
Enhanced Stability of Non-Canonical NPC2 in the symbiosome supports coral-algal symbiosis
published pages: , ISSN: , DOI: 10.1101/399766
2019-04-25

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYMCELLS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYMCELLS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More  

iNANOVAC4CANCER (2019)

BIOHYBRID AND BIODEGRADABLE NANOVACCINES FOR CANCER IMMUNOTHERAPY

Read More