Opendata, web and dolomites

PROMETHEUS SIGNED

Flame nanoengineering for antibacterial medical devices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PROMETHEUS project word cloud

Explore the words cloud of the PROMETHEUS project. It provides you a very rough idea of what is the project "PROMETHEUS" about.

commercialization    quite    physicochemical    infections    innovative    nanocoatings    estimations    antimicrobial    nanoparticle    hinders    outcome    nanomanufacture    direct    commercial    powders    functional    basic    photothermal    reactors    scalability    engineering    principles    integration    close    bacteria    resistance    hr    antibacterial    famous    hybrid    worldwide    substrates    reproducibility    too    generation    layer    single    engineers    tons    threatening    device    health    microneedle    antibiotic    assist    decade    serious    few    maintained    drug    deaths    translated    limitations    synthesis    flame    understudied    life    constitutes    implants    threat    fight    skin    medical    poor    commodity    resistant    labs    nanotechnology    human    discoveries    materials    designing    combining    patch    deposition    smart    last    medicine    nanoparticles    aerosol    public    little    successful    inherent    assembly    nanoscale    utilize    triggered    osteogenic    self   

Project "PROMETHEUS" data sheet

The following table provides information about the project.

Coordinator
KAROLINSKA INSTITUTET 

Organization address
address: Nobels Vag 5
city: STOCKHOLM
postcode: 17177
website: www.ki.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 1˙812˙500 €
 EC max contribution 1˙812˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2023-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KAROLINSKA INSTITUTET SE (STOCKHOLM) coordinator 1˙812˙500.00

Map

 Project objective

Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products today. The main reasons for this are two inherent limitations of most nanomanufacture processes: scalability and reproducibility. There is too little knowledge on how well the unique properties associated with nanoparticles are maintained during their large-scale production while often poor reproducibility hinders their successful use. A key goal here is to utilize a nanomanufacture process famous for its scalability and reproducibility, flame aerosol reactors that produce at tons/hr commodity powders, and advance the knowledge for synthesis of complex nanoparticles and their direct integration in medical devices. Our aim is to develop the next generation of antibacterial medical devices to fight antimicrobial resistance, a highly understudied field. Antimicrobial resistance constitutes the most serious public health threat today with estimations to become the leading cause of human deaths in 30 years. We focus on flame direct nanoparticle deposition on substrates combining nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and device assembly, extending beyond the simple commodity powders of the past. Specific targets here are two devices; a) hybrid drug microneedle patch with photothermal nanoparticles to fight life-threatening skin infections from drug-resistant bacteria and b) smart nanocoatings on implants providing both osteogenic and self-triggered antibacterial properties. The engineering approach for the development of antibacterial devices will provide insight into the basic physicochemical principles to assist in commercialization while the outcome of this research will help the fight against antibiotic resistance improving the public health worldwide.

 Publications

year authors and title journal last update
List of publications.
2019 Dorian F. Henning, Padryk Merkl, Changhun Yun, Federico Iovino, Ling Xie, Eleftherios Mouzourakis, Constantinos Moularas, Yiannis Deligiannakis, Birgitta Henriques-Normark, Klaus Leifer, Georgios A. Sotiriou
Luminescent CeO2:Eu3+ nanocrystals for robust in situ H2O2 real-time detection in bacterial cell cultures
published pages: 286-293, ISSN: 0956-5663, DOI: 10.1016/j.bios.2019.03.012
Biosensors and Bioelectronics 132 2019-11-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROMETHEUS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROMETHEUS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

AdaptiveResponse (2018)

The evolution of adaptive response mechanisms

Read More  

BABE (2018)

Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants

Read More  

EAST (2020)

Using Evolutionary Algorithms to Understand and Secure Web/Enterprise Systems

Read More