Opendata, web and dolomites

PROMETHEUS SIGNED

Flame nanoengineering for antibacterial medical devices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PROMETHEUS project word cloud

Explore the words cloud of the PROMETHEUS project. It provides you a very rough idea of what is the project "PROMETHEUS" about.

poor    public    infections    basic    little    photothermal    antimicrobial    understudied    antibiotic    threat    principles    aerosol    layer    hr    functional    triggered    commodity    worldwide    reproducibility    successful    bacteria    engineering    nanoscale    engineers    famous    osteogenic    deaths    few    commercialization    maintained    threatening    last    nanocoatings    materials    medicine    health    deposition    powders    human    device    estimations    self    outcome    nanoparticle    hinders    inherent    scalability    designing    combining    utilize    antibacterial    generation    translated    assembly    hybrid    life    reactors    medical    synthesis    drug    nanotechnology    integration    resistant    physicochemical    nanoparticles    fight    nanomanufacture    serious    direct    assist    substrates    implants    commercial    flame    microneedle    constitutes    resistance    too    patch    innovative    close    single    decade    limitations    quite    smart    skin    labs    tons    discoveries   

Project "PROMETHEUS" data sheet

The following table provides information about the project.

Coordinator
KAROLINSKA INSTITUTET 

Organization address
address: Nobels Vag 5
city: STOCKHOLM
postcode: 17177
website: www.ki.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 1˙812˙500 €
 EC max contribution 1˙812˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2023-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KAROLINSKA INSTITUTET SE (STOCKHOLM) coordinator 1˙812˙500.00

Map

 Project objective

Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products today. The main reasons for this are two inherent limitations of most nanomanufacture processes: scalability and reproducibility. There is too little knowledge on how well the unique properties associated with nanoparticles are maintained during their large-scale production while often poor reproducibility hinders their successful use. A key goal here is to utilize a nanomanufacture process famous for its scalability and reproducibility, flame aerosol reactors that produce at tons/hr commodity powders, and advance the knowledge for synthesis of complex nanoparticles and their direct integration in medical devices. Our aim is to develop the next generation of antibacterial medical devices to fight antimicrobial resistance, a highly understudied field. Antimicrobial resistance constitutes the most serious public health threat today with estimations to become the leading cause of human deaths in 30 years. We focus on flame direct nanoparticle deposition on substrates combining nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and device assembly, extending beyond the simple commodity powders of the past. Specific targets here are two devices; a) hybrid drug microneedle patch with photothermal nanoparticles to fight life-threatening skin infections from drug-resistant bacteria and b) smart nanocoatings on implants providing both osteogenic and self-triggered antibacterial properties. The engineering approach for the development of antibacterial devices will provide insight into the basic physicochemical principles to assist in commercialization while the outcome of this research will help the fight against antibiotic resistance improving the public health worldwide.

 Publications

year authors and title journal last update
List of publications.
2019 Dorian F. Henning, Padryk Merkl, Changhun Yun, Federico Iovino, Ling Xie, Eleftherios Mouzourakis, Constantinos Moularas, Yiannis Deligiannakis, Birgitta Henriques-Normark, Klaus Leifer, Georgios A. Sotiriou
Luminescent CeO2:Eu3+ nanocrystals for robust in situ H2O2 real-time detection in bacterial cell cultures
published pages: 286-293, ISSN: 0956-5663, DOI: 10.1016/j.bios.2019.03.012
Biosensors and Bioelectronics 132 2019-11-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROMETHEUS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROMETHEUS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RECON (2019)

Reprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space

Read More  

MOBETA (2020)

Motor cortical beta bursts for movement planning and evaluation: Mechanisms, functional roles, and development

Read More  

UNITY (2020)

A Single-Photon Source Featuring Unity Efficiency And Unity Indistinguishability For Scalable Optical Quantum Information Processing

Read More