Opendata, web and dolomites

ONEDEGGAM SIGNED

The search for new physics through precision measurements of the CKM angle gamma

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ONEDEGGAM" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙499˙955 €
 EC max contribution 1˙499˙955 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2023-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙499˙955.00

Map

 Project objective

There is a strong conviction that the Standard Model of particle physics is only a low energy approximation to a higher energy theory containing new fundamental particles. For example, it is not possible to explain the large asymmetry between the properties of matter and anti-matter that must exist to create the universe within we live, with the Standard Model that can only accommodate asymmetries orders of magnitude smaller. The theoretical framework that describes these asymmetries is the Cabibbo-Maskawa-Kobayashi (CKM) matrix. Through study the of the differences between the decay of certain types of hadrons containing a beauty quark, and the corresponding anti-particle decays, this project will lead to a precision measurement of a phase commonly called “gamma” which is related to some of the elements of the CKM matrix. The beauty hadron decay chain involves subsequent decay of charm hadrons, which are not well understood. By understanding this part of the process, in a larger range of decay modes and with significantly enhanced sensitivity than previously possible, the overall understanding of the beauty hadron decay chain is improved. Using the distinctive data collected by the BESIII in China, it is possible to make a number of new measurements that relate to the decay of charm hadrons. With this knowledge it becomes possible to gain considerably more sensitivity from the copious amounts of beauty hadron decays that will be collected by the LHCb experiment at CERN and the Belle II experiment in Japan over the timescale of this project. This new strategy to exploit the synergy between the different experiments means that a global precision of 1° is within reach. This precision has excellent potential to uncover significant discrepancies within the CKM matrix that can only be explained by physics beyond the standard model. This would launch particle physics into the next era of discovery.

 Publications

year authors and title journal last update
List of publications.
2019 M. Bjørn, S. Malde
CP violation and material interaction of neutral kaons in measurements of the CKM angle γ using B± → DK± decays where D → Ks0π+π−
published pages: , ISSN: 1029-8479, DOI: 10.1007/jhep07(2019)106
Journal of High Energy Physics 2019/7 2020-02-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ONEDEGGAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ONEDEGGAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More