Explore the words cloud of the InDyMag project. It provides you a very rough idea of what is the project "InDyMag" about.
The following table provides information about the project.
Coordinator |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Organization address contact info |
Coordinator Country | France [FR] |
Total cost | 185˙076 € |
EC max contribution | 185˙076 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-EF-RI |
Starting year | 2019 |
Duration (year-month-day) | from 2019-03-13 to 2021-09-14 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS | FR (PARIS) | coordinator | 185˙076.00 |
The Earth is a peculiar planet in the solar system: it hosts life and possesses a very active interior. However, it is not the only rocky body to present evidence of internal dynamics: all the rocky planets - except Venus - and some moons have been proved to generate or to have generated a magnetic field. Recent space missions have improved our knowledge of the evolution of these magnetic fields, and direct constraints on the internal structure of some rocky planets are expected in the very next few years. New hypotheses emerged recently to explain the early times of the Earth’s magnetic field, when no thermo-chemical convection could power the geodynamo, giving us new perspectives on Earth’s history. By combining advances in both Earth and planetary sciences, InDyMag aims to better understand the internal dynamics of the Earth and other rocky bodies in our solar system. It will investigate the generation and long-term evolution of their magnetic fields with Earth as a reference, and compare it Mercury, Venus, and Mars, and the Earth's Moon and Ganymede. The fellow, expert in geodynamics and modeling, will develop a model for the time evolution of temperature and composition profiles in metallic cores, exploring a large range of parameters including planet's size, composition and formation history. The crystallization regimes and the initial profiles will be investigated in detail, exploring the full range of dynamics possible in an iron core. Thanks to the expertise of the researchers at the host LPG on space missions and magnetic field measurements, InDyMag will combine observations to geodynamical models to constrain the physical parameters of planetary cores. InDyMag will unravel what is universal in planetary magnetic fields, and what is planet-specific. Its results will be disseminated to the general and specialist audience and will lay the foundations to explore planetary magnetic fields at the exoplanet level.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INDYMAG" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "INDYMAG" are provided by the European Opendata Portal: CORDIS opendata.