Explore the words cloud of the LEMAP project. It provides you a very rough idea of what is the project "LEMAP" about.
The following table provides information about the project.
Coordinator |
HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 2˙493˙250 € |
EC max contribution | 2˙493˙250 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2017-ADG |
Funding Scheme | ERC-ADG |
Starting year | 2018 |
Duration (year-month-day) | from 2018-11-01 to 2023-10-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EV | DE (DRESDEN) | coordinator | 2˙493˙250.00 |
Cosmic magnetic fields, including those of planets, stars, and galaxies, are being generated by the homogenous dynamo effect in flowing electrically conducting fluids. Once produced, these fields may play an active role in cosmic structure formation by fostering angular momentum transport and mass accretion onto central objects, like protostars or black holes, by means of the magnetorotational instability (MRI). Complementary to the decades-long theoretical research into both effects, the last years have seen great progress in respective experimental investigations. The dynamo effect had been verified in three liquid sodium experiments in Riga, Karlsruhe and Cadarache. The helical and the azimuthal versions of the MRI, as well as the current-driven Tayler instability (TI), were demonstrated at Helmholtz-Zentrum Dresden - Rossendorf (HZDR). Here, I propose to make three further breakthroughs in this research field. First, I plan to demonstrate dynamo action based on a precession driven flow of liquid sodium in a cylindrical vessel. Besides thermal and compositional buoyancy, precession has been discussed as a complementary power source of the dynamos of the Earth, the ancient Moon, and other cosmic bodies. A second experiment will deal with magnetically triggered flow instabilities of astrophysical importance, with the main focus on attaining standard MRI, and various combinations of MRI and TI. Both experiments will be carried out at the DRESDYN facility at HZDR which has been conceived by me and which will enter into operation in 2019. In contrast to these well-advanced experimental concepts, my third liquid sodium experiment, which aims at showing the magnetic destabilization of rotating flows with radially increasing angular velocity, still requires more numerical simulations and design engineering. Given the comparatively less demanding technical parameters of this set-up, I expect first experimental results within the funding period, too.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
F. Stefani, A. Giesecke, T. Weier A Model of a Tidally Synchronized Solar Dynamo published pages: , ISSN: 0038-0938, DOI: 10.1007/s11207-019-1447-1 |
Solar Physics 294/5 | 2019-10-03 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEMAP" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "LEMAP" are provided by the European Opendata Portal: CORDIS opendata.