Opendata, web and dolomites

CANCER INVASION SIGNED

Deciphering and targeting the invasive nature of Diffuse Intrinsic Pontine Glioma

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CANCER INVASION" data sheet

The following table provides information about the project.

Coordinator
PRINSES MAXIMA CENTRUM VOOR KINDERONCOLOGIE BV 

Organization address
address: HEIDELBERGLAAN 25
city: UTRECHT
postcode: 3584CS
website: www.prinsesmaximacentrum.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    PRINSES MAXIMA CENTRUM VOOR KINDERONCOLOGIE BV NL (UTRECHT) coordinator 1˙500˙000.00

Map

 Project objective

Introduction: The ability of a cancer cell to invade into the surrounding tissue is the main feature of malignant cancer progression. Diffuse Intrinsic Pontine Glioma (DIPG) is a paediatric high-grade brain tumour with no chance of survival due to its highly invasive nature. Goal: By combining state-of-the-art imaging and transcriptomics, we aim to identify and target the key mechanisms driving the highly invasive growth of DIPG. Technology advances: Two unique single cell resolution imaging techniques that we have recently developed will be implemented: Large-scale Single-cell Resolution 3D imaging (LSR-3D) that allows visualization of complete tumour specimens and intravital microscopy using a cranial imaging window that allows imaging of tumour cell behaviour in living mice. In addition, we will apply a technique of live imaging Patch-seq to perform behaviour studies together with single cell RNA profiling. Expected results: Using a glioma murine model in which the disease is induced in neonates and a new embryonic model based on in utero electroporation, we expect to gain knowledge on the progression of DIPG in maturing brain. LSR-3D imaging on human and murine specimens will provide insight into the cellular tumour composition and its integration in the neuroglial network. With intravital imaging, we will characterize invasive cancer cell behaviour and functional connections with healthy brain cells. In combination with Patch-seq, we will identify transcriptional program(s) specific to invasive behaviour. Altogether, we expect to identify novel key players in cancer invasion and assess their potential to prevent DIPG progression.  Future perspective: With the studies proposed, we will gain fundamental insights into the cancer cell invasion mechanisms that govern DIPG which may provide new potential therapeutic target(s) for this dismal disease. Overall, the knowledge and advanced technologies obtained here will be of great value for the tumour biology field.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CANCER INVASION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CANCER INVASION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

DEEPTIME (2020)

Probing the history of matter in deep time

Read More  

PGEN (2019)

Automated evaluation and correction of generation bias in immune receptor repertoires

Read More