Opendata, web and dolomites

BBBhybrid SIGNED

Advanced in vitro physiological models: Towards real-scale, biomimetic and biohybrid barriers-on-a-chip

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BBBhybrid" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 150˙000.00

Map

 Project objective

This project is focused on the design, the production, the characterization, and the proposal for future commercialization of the first 1:1 scale 3D-printed realistic model of the brain tumor microenvironment with its associated blood neurovasculature. The proposed biomimetic dynamic 3D system, characterized by microcapillary diameter size and fluid flows similar to the in vivo physiological parameters, represents a drastic innovation with respect to other models well-established in the literature and available on the market, since it will allow to reliably reproduce the physiological environment and to accurately estimate the amount of drugs and/or of nanomaterial-associated compounds delivered through a modular length of the system. At the same time, in vitro 3D models are envisioned, allowing more physiologically-relevant information and predictive data to be obtained. All the artificial components will be fabricated through advanced lithography techniques based on two-photon polymerization (2pp), a disrupting mesoscale manufacturing approach which allows the fast fabrication of low-cost structures with nanometer resolution and great levels of reproducibility/accuracy. The proposed platform can be easily adopted in cell biology laboratories as multi-compartmental scaffold for the development of advanced co-culture systems, the primary biomedical applications of which consist in high-throughput screening of brain drugs and in testing of the efficacy of different anticancer therapies in vitro.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BBBHYBRID" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BBBHYBRID" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FuncMAB (2019)

High-throughput single-cell phenotypic analysis of functional antibody repertoires

Read More  

BABE (2018)

Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants

Read More  

SOTMEM (2020)

Topological Insulator-Based Spin Orbit Torque MEMories

Read More