Opendata, web and dolomites

PRinTERs SIGNED

Post-transcriptional regulation of effector function in T cells by RNA binding proteins

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PRinTERs" data sheet

The following table provides information about the project.

Coordinator
Stichting Sanquin Bloedvoorziening 

Organization address
address: Plesmanlaan 125
city: Amsterdam
postcode: 1006 AN
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    Stichting Sanquin Bloedvoorziening NL (Amsterdam) coordinator 2˙000˙000.00

Map

 Project objective

CD8 T cells are critical to fight infections and to clear tumor cells through the production of inflammatory cytokines and cytotoxic molecules. These effector molecules must be tightly controlled: too little leads to the inability to control the pathogen, and too much can result in a life-threatening cytokine storm and tissue damage. While transcriptional control of effector genes is well-studied, regulation at the levels of RNA stability and translation efficiency by RNA-binding proteins (RBPs) has remained underappreciated. We recently found that several cytokines are tightly regulated through these processes, and we identified ZFP36L2 as one of the responsible RBPs. However, much is still to be learned about the underlying molecular mechanisms. Moreover, there are >1000 putative RBPs, and a systematic analysis of their regulatory activity in T cells is lacking, particularly with regard to the control of effector proteins. Here, we will use a combination of mouse genetics, and molecular and cellular biology to gain a deep understanding of the control of cytokine production by RBPs, using ZFP36L2 as a paradigm. Next, we will take a novel, highly sensitive proteomics approach to systematically identify the RBP repertoire in resting and activated primary human T cells. Complementary functional screens will identify those RBPs that control specific effectors. Selected RBPs identified in these screens will be studied in-depth to understand their roles in T cell responses to acute infection and in tumor models. Lastly, we will define how RBPs can imprint and/or maintain the killer phenotype of human CD8 T cells.

This research will significantly advance our understanding of post-transcriptional regulation of T cell effector activity, and it should help us to develop novel tools to drive effective T cell responses against pathogens and malignant cells.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PRINTERS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PRINTERS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

DEEPTIME (2020)

Probing the history of matter in deep time

Read More