Opendata, web and dolomites

CompNanozymes SIGNED

Metal-dependent catalysis of nanozymes: First steps towards computational nanoenzymology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CompNanozymes project word cloud

Explore the words cloud of the CompNanozymes project. It provides you a very rough idea of what is the project "CompNanozymes" about.

found    chemical    catalysis    innovative    zn    nanoparticle    nature    leader    nanotechnology    function    gap    outer    experiments    hybrid    functionalization    enzymes    bimetallic    frontier    reached    stable    gold    multifunctional    free    complexity    flexible    substrates    surface    nanochemistry    nanozymes    difficult    cleavage    model    fill    complexes    alternatives    qm    metalloenzymes    structure    metallo    mechanisms    aided    impacting    coating    proteins    nanomaterial    grow    mm    dependent    cleave    fellow    made    cells    nanomedicine    completing    catalytic    rna    acid    simulations    skill    generate    acquire    computation    metal    natural    artificial    coupled    resembles    group    sites    organization    context    chemosensing    self    nanodesign    resembling    relationships    multiple    acids    nanoparticles    dynamics    advancing    shown    independent    monolayer    energy    substrate    computational    nucleic    compnanozymes    mechanism    protected    ambition    closely    additional    expertise   

Project "CompNanozymes" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 183˙473 €
 EC max contribution 183˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2021-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 183˙473.00

Map

 Project objective

The functionalization of monolayer-protected gold nanoparticles is at the frontier of nanotechnology, with innovative applications emerging in fields such as nanomedicine, chemosensing, and catalysis. Here, we focus on nanomaterial-based artificial enzymes called nanozymes, which have been shown to be highly stable and low-cost alternatives to natural enzymes in a wide range of applications. For example, the self-organization of Zn complexes on the surface of gold nanozymes has been shown to generate multiple bimetallic catalytic sites capable of promoting the cleavage of an RNA model substrate. This two-metal-aided mechanism found in nanozymes closely resembles that used by many metalloenzymes that process nucleic acids in cells. However, the complex, hybrid, and flexible nature of the outer coating monolayer of nanozymes has so far made it difficult to investigate the structure and dynamics of these multifunctional chemical systems, which have reached a level of complexity resembling that of proteins. Within this context, this project’s ambition is to use classical and hybrid QM/MM simulations coupled to free-energy computation, integrated with experiments, to study the metallo-dependent functionality and mechanisms of nanozymes that cleave nucleic acid model substrates. Through CompNanozymes, the fellow will thus acquire additional expertise in computational simulations, completing his research skill set and allowing him to grow into an independent group leader. Success will also fill the large knowledge gap in our understanding of nanoparticle structure-function relationships in nanozymes, advancing the field of computational nanodesign and directly impacting nanochemistry as a whole.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMPNANOZYMES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMPNANOZYMES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More