Opendata, web and dolomites

VorDIST SIGNED

Quantum transport in a disordered two-dimensional ultracold Fermi gas

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "VorDIST" data sheet

The following table provides information about the project.

Coordinator
CONSIGLIO NAZIONALE DELLE RICERCHE 

Organization address
address: PIAZZALE ALDO MORO 7
city: ROMA
postcode: 185
website: www.cnr.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 183˙473 €
 EC max contribution 183˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) coordinator 183˙473.00

Map

 Project objective

Disorder is omnipresent in nature and has a strong impact on quantum materials. The paradigmatic example is Anderson localization of a single particle but many more intriguing situations can arise for many-body systems depending on the interplay between interaction and disorder. The metal-insulator and superconductor-insulator transitions, which highlighted the importance of interaction, still remain enigmatic phenomena. Another profound effect of disorder in superconductors takes place in type-II superconductors, which involve quantum vortices. A quantum vortex in a superconductor is highly influenced by the presence of defects and its mobility is the key ingredient for superconductivity. Despite its importance, a clear understanding of disorder physics is still lacking because of unavoidable complexities in condensed matter systems. In this project, we explore disorder physics with ultracold atomic gas.

The ultracold atomic gas system has been recognized as an excellent quantum simulator because it provides an unprecedentedly controllable and clean testbed. Quantum simulations with quantum gas have successfully addressed important, yet unsolved physical problems in many different fields. Here, we will carry out experimental studies of two-dimensional (2D) Fermionic quantum gas under disorder potential. Our first goal is the observation of 2D Anderson localization. Then we will further investigate the interplay between interaction and disorder. We aim to reveal the robustness of the order parameter of superfluid when the superfluid is transformed into an insulating phase. Next, we will obtain a phase diagram of a disordered 2D system. Lastly, we want to address the paradigmatic problems of vortex matter in a superconductor, both in a single and a bilayer system. Thus, we can unveil vortex dynamics in disordered superfluids.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VORDIST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VORDIST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More