Opendata, web and dolomites

distalC-Hfun SIGNED

Transient directing group for catalytic distal C–H functionalisation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 distalC-Hfun project word cloud

Explore the words cloud of the distalC-Hfun project. It provides you a very rough idea of what is the project "distalC-Hfun" about.

organic    transient    atom    treating    activation    functional    ubiquitous    mainly    removal    catalysis    substrate    applicability    ortho    context    distinguishing    binds    covalent    substitutions    emerged    carbonyl    molecule    lowering    distal    transition    functionalisation    installation    boundaries    groups    extremely    conventional    amongst    last    additional    scarce    difficult    remote    enabled    para    add    final    removes    synthesis    protocol    molecules    metal    tm    group    decades    catalytic    reactivity    strategies    routes    motifs    unreactive    bonds    tools    biologically    relatively    inert    subtle    consequence    site    directing    seek    methodology    progress    made    dgs    realization    sequence    imine    arenes    area    reversibly    prepare    dg    day    functionalised    economical    direct    synthetic    stoichiometric    date    activate    bond    normally    compounds    amount    despite    modifications    push    variety    active    meticulous    efficiency    precisely    differences    outlined    catalyzed    meta   

Project "distalC-Hfun" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-08   to  2022-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 224˙933.00

Map

 Project objective

The development of methods for the transition metal (TM) catalyzed functionalisation of C–H bonds has emerged as an extremely important topic in present-day organic synthesis aiming at providing tools that allow treating the ubiquitous and normally inert C–H bonds as any other functional group for synthetic modifications. However, controlling the site of C–H activation or distinguishing between the subtle differences in reactivity of two given C–H bonds is one of the major challenges yet to be addressed. In this context, meticulous design of directing groups (DG) over the last decades has enabled a variety of relatively unreactive C–H bonds to be functionalised under transition metal catalysis. To date, much progress has been made in developing strategies for the ortho-functionalisation of arenes mainly through the installation of DGs in the stoichiometric amount. However, these DGs are not part of the final target molecule; as a consequence, its covalent installation and/or removal from the substrate will add additional steps to the synthetic sequence thus lowering the efficiency and applicability of these approaches. On the other hand, distal meta- and para-C–H functionalisation approaches, are extremely scarce despite these substitutions are widespread motifs amongst biologically active molecules. The research outlined in this proposal aims at developing a process that makes use of a transient DG in a catalytic amount which binds reversibly with carbonyl compounds via imine formation leading to a novel direct meta- and para-functionalisation methodology. Precisely, we seek to develop a protocol that removes the need for the use of stoichiometric directing groups to activate distal C–H bonds. The realization of the proposed objectives will push the boundaries of the state-of-the-art in the area of remote C–H bond functionalisation by providing atom and step economical access to molecules that are difficult to prepare via conventional multi-step routes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISTALC-HFUN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISTALC-HFUN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PATH (2019)

Preservation and Adaptation in Turkish as a Heritage Language (PATH) - A Natural Language Laboratory in a Small Dutch Town

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

Comedy and Politics (2018)

The Comedy of Political Philosophy. Democratic Citizenship, Political Judgment, and Ideals in Political Practice.

Read More  
lastchecktime (2024-12-22 12:40:26) correctly updated