Opendata, web and dolomites

RODRESET SIGNED

Development of novel optogenetic approaches for improving vision in macular degeneration

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "RODRESET" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙991˙508 €
 EC max contribution 1˙991˙508 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 1˙991˙508.00

Map

 Project objective

In industrialized countries, age-related macular degeneration (AMD) is the leading cause of untreatable blindness. In addition to age-related disease, there are also inherited forms of macular degeneration, such as juvenile-onset Stargardt disease. These conditions, for which there are currently no effective treatments, involve the loss of photoreceptors in the central retina, where a high cone photoreceptor density is responsible for effecting high resolution vision. We recently discovered that cones can modulate the sensitivity of surrounding rod photoreceptors to enable them to be more effective in daylight conditions. In retinal disorders involving degeneration of the macular cones, this lateral interaction is impaired, leading to saturation of the rods’ dynamic range and impaired daylight vision. We have also discovered that direct modulation the neurons underlying this lateral interaction, the horizontal cells, improves quality of vision in mice lacking functional cones. Together, our results identify a specific circuitry underlying rod-mediated vision as a potential therapeutic target following macular degeneration. Here, we aim to exploit these new findings to re-establish the rods’ ability to function in daylight using two distinct approaches. Firstly, we will use direct modification of the rods to permanently shift their light sensitivity into the daylight range. A small area of modified rods that are effective in daylight, likely with a higher temporal resolution, would improve extra-foveal fixation and vision. Secondly, we intend to establish a system that confers light sensitivity onto horizontal cells, to replace light-mediated input from cones. This will restore the natural horizontal cell-derived modulation of light sensitivity to rods, allowing them to function in daylight. Thus, by utilizing our knowledge of specific aspects of retinal circuitry, we aim to develop novel therapies for improving vision in patients with advanced macular degeneration.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RODRESET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RODRESET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More