Opendata, web and dolomites

CHROMREP SIGNED

Dissecting the chromatin response to DNA damage in silenced heterochromatin regions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CHROMREP" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAIR MEDISCH CENTRUM UTRECHT 

Organization address
address: HEIDELBERGLAAN 100
city: UTRECHT
postcode: 3584 CX
website: www.umcutrecht.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙404 €
 EC max contribution 1˙499˙404 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2024-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAIR MEDISCH CENTRUM UTRECHT NL (UTRECHT) coordinator 1˙499˙404.00

Map

 Project objective

Cells are continuously exposed to insults that can break or chemically modify their DNA. To protect the DNA, cells have acquired an arsenal of repair mechanisms. Proper repair of DNA damage is essential for organismal viability and disease prevention. What is often overlooked is the fact that the eukaryotic nucleus contains many different chromatin domains that can each influence the dynamic response to DNA damage. Different chromatin environments are defined by specific molecular and biophysical properties, which could necessitate distinct chromatin responses to ensure safe DNA damage repair. The aim of this proposal is to understand how diverse chromatin domains, and in particular the dense heterochromatin environment, shape the dynamic chromatin response to DNA damage. I recently developed locus-specific DNA damage systems that allow for in-depth analysis of chromatin domain-specific repair responses in Drosophila tissue. I will employ these systems and develop new ones to directly observe heterochromatin-specific dynamics and repair responses. I will combine these systems and state-of-the art chromatin analysis with high-resolution live imaging to dissect the DNA damage-associated heterochromatin changes to determine their function in repair -kinetics, -dynamics and -pathway choice. Deciphering the chromatin dynamics that regulate DNA damage repair in heterochromatin will have broad conceptual implications for understanding the role of these dynamics in other essential nuclear processes, such as replication and transcription. More importantly, understanding how chromatin proteins promote repair will be important in determining how cancer-associated mutations in these chromatin proteins impact genetic instability in tumours in the long run.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHROMREP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHROMREP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More  

REPLAY_DMN (2019)

A theory of global memory systems

Read More