Explore the words cloud of the PFCsByPlasCat project. It provides you a very rough idea of what is the project "PFCsByPlasCat" about.
The following table provides information about the project.
Coordinator |
UNIVERSITA DEGLI STUDI DI PADOVA
Organization address contact info |
Coordinator Country | Italy [IT] |
Total cost | 183˙473 € |
EC max contribution | 183˙473 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2019 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2020 |
Duration (year-month-day) | from 2020-09-01 to 2022-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITA DEGLI STUDI DI PADOVA | IT (PADOVA) | coordinator | 183˙473.00 |
The extensive use of perfluorinated compounds (PFCs) in many industrial/commercial applications, as surfactants, emulsifiers, etc., and their high chemical stability are responsible for their ubiquitous presence in the environment. Specifically, the contamination of groundwater and drinking water supplies by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) is raising great concern as more data on PFCs toxicity in humans and wildlife is becoming available. Thus, a parallel surge in monitoring campaigns and in the search for innovative water treatment technologies for PFCs is required. Since PFCs are highly resistant to degradation by standard chemical and biological processes, advanced oxidation processes (AOPs) are being considered and, including Fenton, ozone and UV irradiation with catalysts, applied so far with limited success. Among innovative AOPs, air non-thermal plasmas (NTP), which produce several reactive species at a time, have been recently tested for the treatment of PFOA/PFOS yielding promising results. The proposed research aims to advance the state of art by developing an innovative treatment process for PFCs in which NTP is applied in combination with novel boron-doped graphene oxide (B-GO) nano photocatalysts. The catalysts synthesized and characterized by the Researcher will be tested on prepared solutions of PFOA and PFOS using various NTP reactors which are available in the beneficiary laboratory. The best catalyst-reactor combination will thus be identified; conditions and parameters will be optimized to maximize the synergy between plasma and catalyst and the efficiency of the novel hybrid plas-cat process. Real samples of contaminated groundwater will be tested to verify the process applicability to complex matrices. For excellence of research, basic guidelines will be drawn and disseminated for implementing an efficient hybrid plas-cat process in view of auspicable scaling-up and technology transfer to stakeholders.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PFCSBYPLASCAT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "PFCSBYPLASCAT" are provided by the European Opendata Portal: CORDIS opendata.