Opendata, web and dolomites

Cancer-Drug-Screen

High-throughput drug screening for identifying personalized cancer treatments tailored to the particular mutations of the patient’s tumor

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Cancer-Drug-Screen" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2016-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 150˙000.00

Map

 Project objective

Cancer is caused by a series of genetic alterations that confer an advantage to cancer cells, leading to uncontrolled growth. However, each tumor exhibits distinct molecular changes, making each patient’s malignancy unique. Hence, in the personalized medicine era, cancer treatment aims to tailor the most suitable treatment for each patient according to his/her genetic background, tumor acquired mutations and clinical indications.

The p53 tumor suppressor is the most frequently mutated gene in human cancers, with thousands of different tumor-associated mutations reported. Many such cancer-associated mutations in p53 lead to loss of its tumor suppressive activity and in some cases, to gain of new oncogenic functions, resulting in tumor recurrence and enhanced patient mortality. Importantly, tumors with different p53 mutations exhibit specific cancerous phenotypes and do not respond to particular treatments.

Based on our ERC-funded breakthrough technology, where we made a library of ~10,000 distinct p53 variants, and based on our strong IPR offering and competitive advantages, here we propose to develop three products for determining which treatment (or combination) would be most effective for treating a patient’s tumor according to his specific p53 sequence, reducing excruciating side effects and improving treatment outcomes: 1) Offering patients/physicians a list of treatments ranked by their efficacy in treating cells of similar origin and p53 mutations to those present in the patient’s tumor, allowing them to make more informed treatment decisions. 2) Offering companies in the personalized cancer treatment field access to our existing proprietary data regarding treatment efficacies towards p53 genetic variants. 3) A service to drug developing companies that applies our technology for testing the efficacy of a client-supplied drug of interest over all ~10,000 p53 mutations in our library in a cell-line of choice.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CANCER-DRUG-SCREEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CANCER-DRUG-SCREEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RECON (2019)

Reprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space

Read More  

EAST (2020)

Using Evolutionary Algorithms to Understand and Secure Web/Enterprise Systems

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More