Explore the words cloud of the b-lactams C-H activation project. It provides you a very rough idea of what is the project "b-lactams C-H activation" about.
The following table provides information about the project.
Coordinator |
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Project website | http://www-gaunt.ch.cam.ac.uk/ |
Total cost | 183˙454 € |
EC max contribution | 183˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2015 |
Duration (year-month-day) | from 2015-05-01 to 2017-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE | UK (CAMBRIDGE) | coordinator | 183˙454.00 |
In Europe, infections caused by multidrug-resistant bacteria lead to more than 25,000 deaths and expenses of billions of euros per year. These numbers dramatically increase when the rest of the world is taken into consideration. Shockingly, the pace of production of new antibiotics to control such microorganisms is stagnating. Therefore, developing new synthetic tools that enable the synthesis of scaffolds with potential antibiotic properties is crucial. Metal catalysed C–H activation represents a versatile tool for building chemical complexity. It mostly relies on directing functional groups to functionalize C–H bonds. Recently, Professor Gaunt at the University of Cambridge has uncovered a new C–H activation mode that enables the conversion of hindered amines into β-lactams. The first aim of this project is to develop this new reactivity mode into a versatile transformation that is able to convert a variety of cyclic and acyclic amines into substituted β-lactam scaffolds. To accomplish this goal, a multi parallel platform based on mass spectrometry, relying either on standard high-throughput procedures or flow chemistry, will be implemented and used to screen a large number of conditions to expand the scope of this new pathway for β-lactams. The flow chemistry system for reaction evaluation will be design in collaboration with Professors Alexei Lapkin (Dept. Chemical Engineering and Biotechnology) and Steve Ley (Chemistry Dept.) from the University of Cambridge. The readily discovered new conditions for C–H activation will then be employed to synthesize a plethora of β-lactams and β-sultam analogs starting from simple secondary amines. Finally, in collaboration with Professor David Spring (Chemistry Dept. University of Cambridge), the bioactivity of the resulting scaffolds will be evaluated against multidrug-resistant bacteria.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Matthew James Gaunt, Jaime Cabrera-Pardo, Aaron Trowbridge, Manuel Nappi, Kyohei Ozaki Selective Pd(II)-Catalyzed Carbonylation of Methylene beta-C-H Bonds in Aliphatic Amines published pages: , ISSN: 1433-7851, DOI: 10.1002/anie.201706303 |
Angewandte Chemie International Edition | 2019-07-23 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "B-LACTAMS C-H ACTIVATION" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "B-LACTAMS C-H ACTIVATION" are provided by the European Opendata Portal: CORDIS opendata.