Explore the words cloud of the IMSTREV project. It provides you a very rough idea of what is the project "IMSTREV" about.
The following table provides information about the project.
Coordinator |
HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
Organization address contact info |
Coordinator Country | Germany [DE] |
Project website | http://www.helmholtz-hzi.de/exim |
Total cost | 171˙460 € |
EC max contribution | 171˙460 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2015 |
Duration (year-month-day) | from 2015-07-01 to 2017-06-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH | DE (BRAUNSCHWEIG) | coordinator | 171˙460.00 |
Regulatory T cells (Tregs) are essential for maintenance of immune homeostasis and peripheral tolerance. The unique challenge to discriminate between pathogens and commensals requires the dynamic adaptation of Tregs to the microenvironment, particularly in the intestinal mucosa. Accordingly, although Tregs are primarily generated in the thymus, they can be also generated in the periphery, and gut-draining mesenteric lymph nodes (mLN) were shown to display a higher Treg-inducing capacity compared to skin-draining peripheral LNs (pLN). Our previous data suggest that these site-specific functional differences of LNs can be attributed to fibroblastic reticular stromal cells (FRCs), and the high Treg-inducing capacity of mLN can be imprinted in LN stromal cells by commensal microbiota. To decipher the molecular details of these site-specific immune-modulatory differences we generated immortalized FRCs, and preliminary data suggest that soluble factors secreted by mLN-derived FRCs mediate the high Treg-inducing capacity of mLN. The present proposal aims to identify molecules secreted from mLN-FRCs that modulate the differentiation of naïve T cells into Tregs. Special emphasis will be laid on the novel field of intercellular communication by extracellular vesicles (EVs), and both RNA-Seq and mass spectrometry approaches will be applied to identify the critical factors on a molecular level. To formally proof the functional importance of the newly identified candidate molecules, immortalized FRCs will be genome-edited using CRISPR-Cas9 technology and tested for their Treg-inducing capacity. Gaining insight into the cellular-subcellular interactions and major molecular mechanisms of peripheral tolerance and Treg generation anticipates promising tools for future vaccine development and therapeutic applications to treat chronic inflammatory and autoimmune diseases.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Maria Pasztoi, Joern Pezoldt, Michael Beckstette, Christoph Lipps, Dagmar Wirth, Manfred Rohde, Krisztina Paloczi, Edit Iren Buzas, Jochen Huehn Mesenteric lymph node stromal cell-derived extracellular vesicles contribute to peripheral de novo induction of Foxp3 + regulatory T cells published pages: , ISSN: 0014-2980, DOI: 10.1002/eji.201746960 |
European Journal of Immunology | 2019-07-23 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMSTREV" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "IMSTREV" are provided by the European Opendata Portal: CORDIS opendata.
A New Monitor for Cosmic Rays in the Solar System: Inverse-Compton Emission from Cosmic-Ray Electrons Scattering with Sunlight
Read MoreCombining carbon nanotubes and gold nanorods to investigate the extracellular space around synapses during neuronal communication
Read More