Opendata, web and dolomites

NANOTAM

Development and Evaluation of Nanomedicines for Cancer Treatment through Immunomodulation: Targeting Tumor-Associated Macrophages

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NANOTAM" data sheet

The following table provides information about the project.

Coordinator
HUMANITAS MIRASOLE SPA 

Organization address
address: VIA MANZONI 56
city: ROZZANO (MI)
postcode: 20100
website: www.humanitas.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 168˙277 €
 EC max contribution 168˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-20   to  2017-05-19

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HUMANITAS MIRASOLE SPA IT (ROZZANO (MI)) coordinator 168˙277.00

Map

 Project objective

This project is focused on the development of novel nanomedicines effective in targeting the immunosuppressive, pro-tumoural, Tumour-Associated Macrophages (TAM) with the aim to manipulate the host’s immune system and improve anti-tumour responses. In most patients, chronic inflammation and immune suppression are the dominant effects in the tumour microenvironment. The infiltration of TAM in tumour tissues has been shown to support tumour growth, invasion and metastasis. Indeed, high density of TAM in tumours is correlated with resistance to therapies and poor prognosis. These findings establish TAM as promising targets of future anti-tumour therapies.

Here, we aim to design a series of Therapeutic Nanostructures (TNs), containing immunomodulatory or chemotherapeutic compounds, and conveniently functionalized, in order to target and re-educate or kill the TAM. These novel TNs will be composed of biodegradable polysaccharides, i.e. chitosan (CS) or hyaluronic acid (HA), and will be functionalized, with the aim to develop a series of “targeting” strategies to optimally reach TAM in vivo. These strategies involve the chemical linking of: (i) mannose residues expected to direct the TNs to the mannose receptors, highly expressed on the surface of TAM or (ii) the tumour lymphatic-specific peptide (LyP-1), known to have affinity towards NRP1 on TAM. The nanomedicines (TNs) will be loaded with pharmacological activators of TLR7 aimed to re-educate TAM into immunostimulatory anti-tumour macrophages. In the event that re-polarization of TAM is not satisfactory, or its effect is not long lasting in vivo, TNs will be loaded with chemotherapeutic drugs able to kill TAM. The TNs will be tested in vitro and in vivo to verify their effectiveness in switching back the pro-tumoural properties of TAM and their effect on tumour growth. We expect that this approach will enable greater progress in the treatment of tumours and ultimately lead to improved outcomes for cancer patients.

 Publications

year authors and title journal last update
List of publications.
2015 Fernando Torres Andón, María José Alonso
Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells
published pages: 656-671, ISSN: 1061-186X, DOI: 10.3109/1061186X.2015.1073295
Journal of Drug Targeting 23/7-8 2019-07-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOTAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOTAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More