Opendata, web and dolomites

Sulphirulence

Re-engineering of fungal sulphur metabolism to limit mould viability and virulence.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Sulphirulence project word cloud

Explore the words cloud of the Sulphirulence project. It provides you a very rough idea of what is the project "Sulphirulence" about.

wish    deficient    mutational    sole    intact    infection    mice    annum    viability    blockade    oxidized    synthase    disease    candidate    assimilation    pathogenicity    snps    regulation    transcriptome    clinical    antifungal    source    therapies    human    eliminated    sulphur    methionine    molecular    synthesis    million    world    exploited    mammalian    mutants    scientific    gt    precise    eukaryotic    genome    correlates    occurrence    host    expertise    sequences    fungus    precursor    cysteine    containing    experimental    illnesses    scrutinizing    sulfhydration    homocysteine    aspergillus    biosynthesis    seek    vivo    appears    virulence    essentiality    fumigatus    responsible    class    leaving    sources    respectively    cells    proteins    decipher    requirement    view    foremost    inorganic    harness    lungs    pathogen    function    gaseous    molecule    secondary    designing    h2s    mould    fungal    signalling    enforce    enzyme    exploitable    discovered    transgenic   

Project "Sulphirulence" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2018-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 183˙454.00

Map

 Project objective

Aspergillus fumigatus, the major mould pathogen of human lungs, is responsible for > 2 million illnesses per annum in Europe . I have discovered that sulphur is an essential host-derived element during A. fumigatus infection . This finding is novel, and highly exploitable as a) Synthesis of the sulphur-containing molecule methionine appears to be essential for viability of A. fumigatus b) Regulation of sulphur assimilation is essential for A. fumigatus virulence and c) The foremost candidate sulphur source in mammalian lungs (H2S) is gaseous, and recently identified as a novel signalling molecule in eukaryotic cells . I now wish to harness world-class clinical and scientific expertise in the field of fungal pathogenicity to identify the precise molecular source of sulphur exploited by A. fumigatus during experimental and clinical infection, with a view to designing novel antifungal therapies. OBJECTIVES 1. To define the role of methionine synthase in A. fumigatus viability I will enforce a mutational blockade upon biosynthesis of the sole methionine precursor, homocysteine, while leaving methionine synthase intact. This will decipher between essentiality of methionine biosynthesis, and essentiality of a secondary function of the methionine synthase enzyme. 2. I have eliminated cysteine and oxidized inorganic-S sources as in-host sources of sulphur. I will now address, via mutational analysis in the fungus, in-host transcriptome and transgenic mice whether methionine or H2S are exploited in the host. Having defined the S-source exploited in vivo, I will seek correlates with human disease by scrutinizing human and fungal genome sequences for SNPs associated, respectively, with human H2S production and fungal sulphur assimilation. 3. I will use A. fumigatus mutants deficient in production and assimilation of H2S to address the occurrence of, and requirement for, sulfhydration of fungal proteins during mammalian infection.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SULPHIRULENCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SULPHIRULENCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  
lastchecktime (2026-01-15 0:21:20) correctly updated