Opendata, web and dolomites

Sulphirulence

Re-engineering of fungal sulphur metabolism to limit mould viability and virulence.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Sulphirulence project word cloud

Explore the words cloud of the Sulphirulence project. It provides you a very rough idea of what is the project "Sulphirulence" about.

clinical    illnesses    responsible    million    mutants    human    synthesis    precise    class    assimilation    molecular    decipher    designing    disease    essentiality    sequences    therapies    secondary    signalling    containing    exploited    mould    sources    homocysteine    harness    occurrence    cells    seek    expertise    deficient    synthase    sulfhydration    fungal    proteins    sole    scientific    virulence    wish    correlates    annum    infection    precursor    view    transcriptome    sulphur    candidate    fumigatus    respectively    experimental    scrutinizing    pathogen    fungus    pathogenicity    foremost    cysteine    enforce    antifungal    inorganic    eukaryotic    transgenic    world    mutational    leaving    function    appears    discovered    mice    eliminated    blockade    h2s    gaseous    exploitable    methionine    aspergillus    biosynthesis    oxidized    mammalian    genome    source    molecule    regulation    requirement    gt    snps    viability    lungs    host    intact    enzyme    vivo   

Project "Sulphirulence" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2018-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 183˙454.00

Map

 Project objective

Aspergillus fumigatus, the major mould pathogen of human lungs, is responsible for > 2 million illnesses per annum in Europe . I have discovered that sulphur is an essential host-derived element during A. fumigatus infection . This finding is novel, and highly exploitable as a) Synthesis of the sulphur-containing molecule methionine appears to be essential for viability of A. fumigatus b) Regulation of sulphur assimilation is essential for A. fumigatus virulence and c) The foremost candidate sulphur source in mammalian lungs (H2S) is gaseous, and recently identified as a novel signalling molecule in eukaryotic cells . I now wish to harness world-class clinical and scientific expertise in the field of fungal pathogenicity to identify the precise molecular source of sulphur exploited by A. fumigatus during experimental and clinical infection, with a view to designing novel antifungal therapies. OBJECTIVES 1. To define the role of methionine synthase in A. fumigatus viability I will enforce a mutational blockade upon biosynthesis of the sole methionine precursor, homocysteine, while leaving methionine synthase intact. This will decipher between essentiality of methionine biosynthesis, and essentiality of a secondary function of the methionine synthase enzyme. 2. I have eliminated cysteine and oxidized inorganic-S sources as in-host sources of sulphur. I will now address, via mutational analysis in the fungus, in-host transcriptome and transgenic mice whether methionine or H2S are exploited in the host. Having defined the S-source exploited in vivo, I will seek correlates with human disease by scrutinizing human and fungal genome sequences for SNPs associated, respectively, with human H2S production and fungal sulphur assimilation. 3. I will use A. fumigatus mutants deficient in production and assimilation of H2S to address the occurrence of, and requirement for, sulfhydration of fungal proteins during mammalian infection.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SULPHIRULENCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SULPHIRULENCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More