Explore the words cloud of the PAAL-POC project. It provides you a very rough idea of what is the project "PAAL-POC" about.
The following table provides information about the project.
Coordinator |
UNIWERSYTET WARSZAWSKI
Organization address contact info |
Coordinator Country | Poland [PL] |
Total cost | 150˙000 € |
EC max contribution | 150˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2015-PoC |
Funding Scheme | ERC-POC |
Starting year | 2015 |
Duration (year-month-day) | from 2015-11-01 to 2017-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIWERSYTET WARSZAWSKI | PL (WARSZAWA) | coordinator | 150˙000.00 |
Nowadays, we witness that more and more information is stored and managed in a digital way. Moreover, very often processes are executed and planed by computers. This allows applying computer methods to optimize performance of our actions on an unprecedented scale. This is clearly visible in the case of eCommerce, where the main arena of operation of companies is handled solely using computers. Typically, machine learning tools and algorithms are widely used, e.g., for the prediction of user behavior, user classification, or in recommendation systems. When applying such tools one needs to base his computations on existing historical data. This limits the prediction power of such systems, as we cannot predict the reaction of the users nor of the markets to changes in our strategy. In the case of bidding for Ads in online auctions, we only have full information about the auctions we have won, but in the case of lost auctions we only know that we have lost. Hence, it is almost impossible to predict which auctions we would win using only plain historical data. This problem calls for a novel approach that could extrapolate missing information. Here, we propose the development of such framework together with the programming library that would support such extrapolation. This new framework will incorporate algorithmic game theory into the existing approximation and machine learning algorithms. Game theory gives the right tools to talk about incentives of strategic agents and allows predicting response of market actors to changing conditions. Our idea is to describe these incentives and to build a force feedback loop between market models and algorithmic optimization methods. We will first extract and learn the parameters of the market models from the historical data, only then the extrapolated model will be used as the benchmark for the optimization methods. This novel idea will allow to use optimization tools in the previously intractable parameter range.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Stefano Leonardi, Gianpiero Monaco, Piotr Sankowski, Qiang Zhang Budget Feasible Mechanisms on Matroids published pages: 368-379, ISSN: , DOI: 10.1007/978-3-319-59250-3_30 |
2019-07-22 | |
2016 |
Andrzej Pacuk, Piotr Sankowski, Karol Wegrzycki, Piotr Wygocki Locality-Sensitive Hashing Without False Negatives for l_p published pages: 105-118, ISSN: , DOI: 10.1007/978-3-319-42634-1_9 |
2019-07-22 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PAAL-POC" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "PAAL-POC" are provided by the European Opendata Portal: CORDIS opendata.