Opendata, web and dolomites

Report

Teaser, summary, work performed and final results

Periodic Reporting for period 2 - STRONG-Q (Strong single-photon radiation-pressure coupling for quantum optomechanics)

Teaser

While quantum physics is one of the most successful theories in modern science, it remains a puzzle why we do not observe quantum effects in our macroscopic every-day life. Quantum theory in fact does not pose an inherent limit on the size and mass of a quantum system. The...

Summary

While quantum physics is one of the most successful theories in modern science, it remains a puzzle why we do not observe quantum effects in our macroscopic every-day life. Quantum theory in fact does not pose an inherent limit on the size and mass of a quantum system. The field of optomechanics has been established with the explicit goal of testing massive, macroscopic quantum states. Here, the radiation-pressure force is used to bring a mechanical oscillator into a quantum state by coupling it to light. Most current experiments are however limited by either the optical or mechanical quality of the mechanical system, which so far have prevented a true breakthrough. In this project we develop mechanical oscillators with state-of-the-art quality that will allow us to realize experiments for probing quantum physics with large objects at room temperature. The understanding of these effects will have a profound impact on the fundamental physics that governs our every day lives and will lead to novel technologies in sensing applications.

Work performed

We have developed novel mechanical systems of unprecedented mechanical quality. We have also made these devices highly reflective by patterning a photonic crystal in their center, which allows for efficient coupling to a laser. The devices feature the best force-sensitivity on-chip at room temperature, which will allow for novel force sensing applications, while at the same time functioning as a building block for fundamentally new quantum technologies. Most recently, we have developed an integrated way of building arrays of several of these mechanical devices, which will allow to increase the opto-mechanical coupling strength even furter, potentially opening up the possibilities for experiments in the so-called strong coupling regime.

Final results

The quality and sensitivity of devices developed are well beyond the state-of-the-art and has allowed us to fabricate some of the largest high-aspect ration high-reflectivity mirrors in the world. In addition, we have demonstrated the first integrated two-device array of high-reflectivity mirrors, which forms the direct basis for the rest of the project to realize quantum experiments with mechanical systems at room temperature.

Website & more info

More info: http://groeblacherlab.tudelft.nl.