Opendata, web and dolomites

NANOthermMA SIGNED

Advanced Simulation Design of Nanostructured Thermoelectric Materials with Enhanced Power Factors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NANOthermMA project word cloud

Explore the words cloud of the NANOthermMA project. It provides you a very rough idea of what is the project "NANOthermMA" about.

record    structures    platform    consumption    examples    conductivity    strategies    demonstrated    central    event    nanoscale    propositions    first    improvements    conductivities    mk    reported       sigma    fuels    lies    nanoscience    evolve    inversely    2w    gt    maximum    impacts    predictive    entirely       power    tool    amounts    predictions    potentially    theoretical    energy    techniques    kappa    fossil    performance    optimization    te    relax    conversion    adverse    inverse    roughly    dependence    core    theory    material    relaxing    validate    corresponding    transport    simulation    electrical    coefficient    efficiencies    electricity    reduce    interdependence    waste    nanostructures    unprecedentedly    seebeck    simulator    thermal    time    nanostructured    vast    electro    s2    ends    convert    bulk    times    efficiency    accuracy    thermoelectric    appropriate    never    materials    grade    guide    generalize    heat    fact    run    physics    experimentally   

Project "NANOthermMA" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/computational_nanotechnology_lab/erc_nanothermma
 Total cost 1˙498˙813 €
 EC max contribution 1˙498˙813 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 1˙258˙813.00
2    UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA IT (MILANO) participant 240˙000.00

Map

 Project objective

Roughly one-third of all energy consumption ends up as low-grade heat. Thermoelectric (TE) materials could potentially convert vast amounts of this waste heat into electricity and reduce the dependence on fossil fuels. State-of-the-art nanostructured materials with record-low thermal conductivities (κ~1-2W/mK) have recently demonstrated large improvements in conversion efficiencies, but not high enough to enable large scale implementation. Central to this low efficiency problem lies the fact that the Seebeck coefficient (S) and the electrical conductivity (σ), the parameters that determine the TE power factor (σS2), are inversely related. Relaxing this inverse interdependence has never been achieved, and TE efficiency remains low. My recent work in nanostructured materials, however, demonstrated for the first time how such a significant event can be achieved, and unprecedentedly large power factors compared to the corresponding bulk material were reported. This project focuses around four ambitious objectives: i) Theoretically establish and generalize the strategies that relax the adverse interdependence of σ and S in nanostructures and achieve power factors >5× compared to the state-of-the-art; ii) Experimentally validate the theoretical propositions through well-controlled material design examples; iii) Provide a predictive, state-of-the-art, high-performance, electro-thermal simulator to generalize the concept and guide the design of the entirely new nanostructured TE materials proposed. Appropriate theory and techniques will be developed so that the tool includes all relevant nanoscale transport physics to ensure accuracy in predictions. Simulation capabilities for a large selection of materials and structures will be included; iv) Develop robust, ‘inverse-design’ optimization capabilities within the simulator, targeting maximum performance. In the long run, the simulator could evolve as a core platform that impacts many different fields of nanoscience as well.

 Publications

year authors and title journal last update
List of publications.
2019 Samuel Foster, Neophytos Neophytou
Effectiveness of nanoinclusions for reducing bipolar effects in thermoelectric materials
published pages: 91-98, ISSN: 0927-0256, DOI: 10.1016/j.commatsci.2019.04.005
Computational Materials Science 164 2019-10-15
2019 Chathurangi Kumarasinghe, Neophytos Neophytou
Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: The case of Co-based half-Heusler alloys
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.99.195202
Physical Review B 99/19 2019-10-15
2019 Laura de Sousa Oliveira, Neophytos Neophytou
Large-scale molecular dynamics investigation of geometrical features in nanoporous Si
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.100.035409
Physical Review B 100/3 2019-10-15
2016 Mischa Thesberg, Hans Kosina, Neophytos Neophytou
On the effectiveness of the thermoelectric energy filtering mechanism in low-dimensional superlattices and nano-composites
published pages: 234302, ISSN: 0021-8979, DOI: 10.1063/1.4972192
Journal of Applied Physics 120/23 2019-10-15
2019 Dhritiman Chakraborty, Samuel Foster, and Neophytos Neophytou
Monte Carlo simulations for phonon transport in silicon nanomaterials
published pages: , ISSN: , DOI:
MaterialsToday: Proceedings 2019-10-15
2017 Mischa Thesberg, Hans Kosina, Neophytos Neophytou
On the Lorenz number of multiband materials
published pages: 125206, ISSN: 2469-9969, DOI: 10.1103/PhysRevB.95.125206
Physical Review B 95/12 2019-10-15
2019 Dhritiman Chakraborty, Laura de Sousa Oliveira, Neophytos Neophytou
Enhanced Phonon Boundary Scattering at High Temperatures in Hierarchically Disordered Nanostructures
published pages: , ISSN: 0361-5235, DOI: 10.1007/s11664-019-06959-4
Journal of Electronic Materials 2019-10-15
2018 Patrizio Graziosi, Neophytos Neophytou
Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on some Heusler and oxide compounds
published pages: 84503, ISSN: 0021-8979, DOI: 10.1063/1.5011328
Journal of Applied Physics 123/8 2019-10-15
2018 Samuel Foster, Neophytos Neophytou
Doping Optimization for the Power Factor of Bipolar Thermoelectric Materials
published pages: , ISSN: 0361-5235, DOI: 10.1007/s11664-018-06857-1
Journal of Electronic Materials 2019-10-15
2018 Vargiamidis, Vassilios; Foster, Samuel; Neophytou, Neophytos
Thermoelectric power factor in nanostructured materials with randomized nanoinclusions
published pages: 1700997, ISSN: 1862-6319, DOI: 10.1002/201700997
Physica Status Solidi A 215 2019-10-15
2017 Samuel Foster, Mischa Thesberg, Neophytos Neophytou
Thermoelectric power factor of nanocomposite materials from two-dimensional quantum transport simulations
published pages: 195425, ISSN: 2469-9969, DOI: 10.1103/PhysRevB.96.195425
Physical Review B 96/19 2019-10-15
2016 Hossein Karamitaheri, Neophytos Neophytou
On the channel width-dependence of the thermal conductivity in ultra-narrow graphene nanoribbons
published pages: 63102, ISSN: 0003-6951, DOI: 10.1063/1.4960528
Applied Physics Letters 109/6 2019-10-15
2018 Dhritiman Chakraborty, Samuel Foster, Neophytos Neophytou
Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures
published pages: 115435, ISSN: 2469-9950, DOI: 10.1103/physrevb.98.115435
Physical Review B 98/11 2019-10-15
2016 Nick S. Bennett, Daragh Byrne, Aidan Cowley, Neophytos Neophytou
Dislocation loops as a mechanism for thermoelectric power factor enhancement in silicon nano-layers
published pages: 173905, ISSN: 0003-6951, DOI: 10.1063/1.4966686
Applied Physics Letters 109/17 2019-10-15
2019 Vassilios Vargiamidis, Neophytos Neophytou
Hierarchical nanostructuring approaches for thermoelectric materials with high power factors
published pages: 45405, ISSN: 2469-9950, DOI: 10.1103/physrevb.99.045405
Physical Review B 99/4 2019-10-15
2016 Jaime Andres Perez-Taborda, Miguel Muñoz Rojo, Jon Maiz, Neophytos Neophytou, Marisol Martin-Gonzalez
Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications
published pages: 32778, ISSN: 2045-2322, DOI: 10.1038/srep32778
Scientific Reports 6/1 2019-10-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOTHERMMA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOTHERMMA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QLite (2019)

Quantum Light Enterprise

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More