Opendata, web and dolomites

FETA

Fluid impacts in EarTh Accretion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FETA project word cloud

Explore the words cloud of the FETA project. It provides you a very rough idea of what is the project "FETA" about.

molten    questions    lab    place    combines    planetary    researcher    progress    initiation    efficiency    first    energy    silicate    amounts    environment    cratering    drops    mass    magma    acquired    impacts    accreted    tectonics    time    constraints    silicates    fragment    deep    turbulence    instance    equilibration    coherent    played    mechanics    theory    complementary    regime    laws    evolution    metallic    observations    geophysical    prodigious    experiments    core    metal    interpret    host    formed    generation    chemical    magnetic    geochemistry    numerical    organisation    liquid    setting    fluid    geodynamics    differentiated    analog    protoplanet    projectile    clues    indicate    turbulent    stage    collisions    gaps    earth    expertise    scales    fundamental    planets    usa    bridging    ideal    melting    diagrams    physical    ocean    accretion    delivered    origin    mantle    geochemical    simulations    embryos    reinvested    exoplanets    released    fate    mixing    interior    plate    life    scaling   

Project "FETA" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://feta703767.wordpress.com/
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2016
 Duration (year-month-day) from 2016-11-01   to  2018-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Geochemical and geophysical observations indicate that much of Earth’s mass was accreted during large impacts between planetary embryos already differentiated into a metallic core and a silicate mantle. These collisions played a crucial role in setting the stage for Earth evolution, including the initiation of plate tectonics, the generation of Earth’s magnetic field, and the development of life. Each impact delivered prodigious amounts of energy, melting the projectile and the protoplanet's mantle, and creating an environment where the metallic liquid core of the projectile was released within a molten silicate magma ocean. The fate of the projectile’s core following impact affected the efficiency of chemical equilibration between metal and silicates, and therefore the geochemistry of Earth’s deep interior. Recent studies have provided clues on the physical processes involved, however, major questions remain. For instance, does the projectile’s core remain coherent or does it fragment into drops during the impact ?

This project includes the first analog fluid mechanics experiments on large impacts that formed the Earth, and combines them with numerical simulations and theory. Complementary to simulations, experiments can produce turbulence, as expected during Earth accretion. Regime diagrams and scaling laws on turbulent mixing obtained from these experiments and simulations will provide key constraints to interpret geochemical observations in terms of accretion time scales and processes. Bridging gaps between fluid mechanics, geodynamics, impact cratering and geochemistry, this project is expected to bring fundamental progress in our understanding of the origin of the Earth, planets, and exoplanets. The researcher’s expertise in Earth accretion and in lab experiments, acquired in the USA, will be reinvested in Europe through this project. Because the work is in fluid mechanics, the host organisation is the ideal place for this project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FETA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FETA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More  

PmNC (2019)

Policy-making of early nature conservation. The Netherlands and the United Kingdom compared, 1930-1960

Read More